2.在△ABC中,已知$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow b$,點(diǎn)D在邊BC上,且$\overrightarrow{BD}$=$3\overrightarrow{DC}$,用$\overrightarrow a$,$\overrightarrow b$表示$\overrightarrow{AD}$,則$\overrightarrow{AD}$=( 。
A.$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow$B.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$C.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$D.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow$

分析 根據(jù)平面向量的線性表示與運(yùn)算性質(zhì),進(jìn)行計(jì)算即可.

解答 解:△ABC中,$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow b$,且$\overrightarrow{BD}$=$3\overrightarrow{DC}$,
如圖所示,
∴$\overrightarrow{DC}$=$\frac{1}{4}$$\overrightarrow{BC}$=$\frac{1}{4}$($\overrightarrow{AC}$-$\overrightarrow{AB}$),
∴$\overrightarrow{AD}$=$\overrightarrow{AC}$+$\overrightarrow{CD}$,
=$\overrightarrow{AC}$-$\overrightarrow{DC}$
=$\overrightarrow{AC}$-$\frac{1}{4}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)
=$\frac{3}{4}$$\overrightarrow{AC}$+$\frac{1}{4}$$\overrightarrow{AB}$
=$\frac{3}{4}$$\overrightarrow b$+$\frac{1}{4}$$\overrightarrow{a}$.
故選:D.

點(diǎn)評(píng) 本題考查了平面向量的線性表示與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某工廠為提升產(chǎn)品銷售,決定投入適當(dāng)廣告費(fèi)進(jìn)行促銷,經(jīng)調(diào)查測(cè)算,該產(chǎn)品的銷售量M萬件與促銷費(fèi)用x萬元滿足M=3-$\frac{2}{x+1}$(0≤x≤a,a為正常數(shù)),已知生產(chǎn)該批產(chǎn)品M萬件還需投入其他成本10+2M萬元,產(chǎn)品銷售價(jià)格定為(4+$\frac{20}{M}$)元/件.假定該廠家的生產(chǎn)能充分滿足市場(chǎng)需求.
(1)請(qǐng)將該產(chǎn)品的純利潤(rùn)y萬元表示為促銷費(fèi)用x萬元的函數(shù);
(2)促銷費(fèi)用投入多少萬元時(shí),工廠的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=xlnx+x2-3x-$\frac{x}{e^x}$(x>0)(e為自然對(duì)數(shù)的底數(shù))
(Ⅰ)求f(x)的極值;
(Ⅱ)求證:ex≥x+1;
(Ⅲ)求證f'(x)在(0,+∞)上為單調(diào)遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在復(fù)平面內(nèi),滿足z•(cos1-isin1)=1的復(fù)數(shù)z的共軛復(fù)數(shù)$\overline{z}$對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.據(jù)統(tǒng)計(jì),2015年“雙11”天貓總成交金額突破912億元.某購(gòu)物網(wǎng)站為優(yōu)化營(yíng)銷策略,對(duì)11月11日當(dāng)天在該網(wǎng)站進(jìn)行網(wǎng)購(gòu)消費(fèi)且消費(fèi)金額不超過1000元的1000名網(wǎng)購(gòu)者(其中有女性800名,男性200名)進(jìn)行抽樣分析.采用根據(jù)性別分層抽樣的方法從這1000名網(wǎng)購(gòu)者中抽取100名進(jìn)行分析,得到下表:(消費(fèi)金額單位:元)
女性消費(fèi)情況:
消費(fèi)金額(0,200)[200,400)[400,600)[600,800)[800,1000)
人數(shù)5101547x
男性消費(fèi)情況:
消費(fèi)金額(0,200)[200,400)[400,600)[600,800)[800,1000)
人數(shù)2310y2
(1)計(jì)算x,y的值;在抽出的100名且消費(fèi)金額在[800,1000](單位:元)的網(wǎng)購(gòu)者中隨機(jī)選出兩名發(fā)放網(wǎng)購(gòu)紅包,求選出的兩名網(wǎng)購(gòu)者恰好是一男一女的概率;
(2)若消費(fèi)金額不低于600元的網(wǎng)購(gòu)者為“網(wǎng)購(gòu)達(dá)人”,低于600元的網(wǎng)購(gòu)者為“非網(wǎng)購(gòu)達(dá)人”,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫2×2列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過0.010的前提下認(rèn)為“是否為‘網(wǎng)購(gòu)達(dá)人’與性別有關(guān)?”
女性男性總計(jì)
網(wǎng)購(gòu)達(dá)人50         5          55         
非網(wǎng)購(gòu)達(dá)人301545
總計(jì)8020100
附:
P(k2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879
(k2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.有一批種子,每一粒種子發(fā)芽的概率都為0.9,那么播下15粒種子,恰有14粒發(fā)芽的概率是(  )
A.1-0.914B.0.914C.C15140.9(1-0.9)14D.C15140.914(1-0.9)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=$\sqrt{lo{g}_{4}x}$的定義域是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.過圓O:x2+y2=4內(nèi)一點(diǎn)A(不與O重合)且與圓O相切的動(dòng)圓圓心C的軌跡是以O(shè),A為焦點(diǎn)的橢圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{{x}^{2}+x+1}{{e}^{x}}$.
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若曲線y=f(x)與直線y=b(b∈R)有3個(gè)交點(diǎn),求實(shí)數(shù)b的取值范圍;
(3)過點(diǎn)P(-1,0)可作幾條直線與曲線y=f(x)相切?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案