【題目】已知全集為實(shí)數(shù)集R,集合A={x|y= + },B={x|log2x>1}.
(1)分別求A∩B,(RB)∪A;
(2)已知集合C={x|1<x<a},若CA,求實(shí)數(shù)a的取值集合.
【答案】
(1)解:∵A={x|y= + }={x|1≤x≤3},
B={x|log2x>1}={x|x>2},
∴A∩B={x|2<x≤3},
∵CRB={x|x≤2},
∴(CRB)∪A={x|x≤2}∪{x|1≤x≤3}={x|x≤3}.
(2)解:①當(dāng)a≤1時(shí),C≠,此時(shí)CA;
②當(dāng)a>1時(shí),CA,則1<a≤3.
綜合①②,可得a的取值范圍是(﹣∞,3]
【解析】(1)由A={x|y= + }={x|1≤x≤3},B={x|log2x>1}={x|x>2},能求出A∩B和(CRB)∪A.(2)當(dāng)a≤1時(shí),C≠,此時(shí)CA;當(dāng)a>1時(shí),CA,則1<a≤3,由此能求出a的取值范圍.
【考點(diǎn)精析】掌握交、并、補(bǔ)集的混合運(yùn)算是解答本題的根本,需要知道求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問(wèn)題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語(yǔ)言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知冪函數(shù)f(x)滿(mǎn)足:對(duì)任意x1 , x2∈R,當(dāng)且僅當(dāng)x1=x2時(shí),有f(x1)=f(x2).則f(﹣1)+f(0)+f(1)的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=f(x)是定義在R上的奇函數(shù),且 為偶函數(shù),對(duì)于函數(shù)y=f(x)有下列幾種描述,其中描述正確的是( ) ①y=f(x)是周期函數(shù);②x=π是它的一條對(duì)稱(chēng)軸
③(﹣π,0)是它圖象的一個(gè)對(duì)稱(chēng)中心;④當(dāng) 時(shí),它一定取最大值
A.①②
B.①③
C.②④
D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,AE:EB=1:2.
(1)求△AEF與△CDF的周長(zhǎng)比;
(2)如果△AEF的面積等于6cm2 , 求△CDF的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中,是偶函數(shù)且在區(qū)間(0,+∞)上單調(diào)遞減的函數(shù)是( )
A.y=2x
B.y=
C.y=2
D.y=﹣x2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列命題:
①命題:x∈(0,2),3x>x3的否定是:x∈(0,2),3x≤x3;
②若f(x)=2x﹣2﹣x,則x∈R,f(﹣x)=﹣f(x);
③若f(x)=x+,則x0∈(0,+∞),f(x0)=1;
④等差數(shù)列{an}的前n項(xiàng)和為Sn,若a4=3,則S7=21;
⑤在△ABC中,若A>B,則sinA>sinB.
其中真命題是____.(只填寫(xiě)序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 ,將函數(shù) 的圖象按向量 平移后得到函數(shù)g(x)的圖象.
(1)求函數(shù)g(x)的表達(dá)式;
(2)若函數(shù) 上的最小值為h(a),求h(a)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的焦距為2,過(guò)短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)的圓的面積為,過(guò)橢圓的右焦點(diǎn)作斜率為()的直線與橢圓相交于、兩點(diǎn),線段的中點(diǎn)為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)垂直于的直線與軸交于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班有36名同學(xué)參加數(shù)學(xué)、物理、化學(xué)課外探究小組,每名同學(xué)至多參加兩個(gè)小組,已知參加數(shù)學(xué)、物理、化學(xué)小組的人數(shù)分別為26,15,13,同時(shí)參加數(shù)學(xué)和物理小組的有6人,同時(shí)參加物理和化學(xué)小組的有4人,則同時(shí)參加數(shù)學(xué)和化學(xué)小組的有人.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com