5.已知定義在R上的偶函數(shù)y=f(x)滿足f(x)=f(1-x),當$x∈[{0,\frac{1}{2}}]$時,f(x)=-4x2+4x,則函數(shù)g(x)=f(x)-ln(x+1)的零點個數(shù)為4.

分析 求出f(x)的周期和對稱軸,做出f(x)和y=ln(x+1)的函數(shù)圖象,根據(jù)函數(shù)圖象的交點個數(shù)判斷.

解答 解:∵f(x)=f(1-x),∴f(x)的圖象關于x=$\frac{1}{2}$對稱,
又f(x)是偶函數(shù),∴f(x)=f(1-x)=f(x-1),
∴f(x)的周期是T=1.
令g(x)=0得f(x)=ln(x+1),
做出f(x)和y=ln(x+1)的函數(shù)圖象如圖所示:

由圖象可知f(x)和y=ln(x+1)的函數(shù)圖象有4個交點,
∴g(x)=f(x)-ln(x+1)有4個零點.
故答案為:4.

點評 本題考查了函數(shù)零點個數(shù)與函數(shù)圖象的關系,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.已知△ABC的三個內角A、B、C滿足A+B=2C,$\frac{1}{cosA}$+$\frac{1}{cosC}$=-$\frac{\sqrt{2}}{cosB}$,則cos$\frac{A-C}{2}$的值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若x,y滿足 $\left\{\begin{array}{l}{2x-y≤0}\\{x+y≤3}\\{x≥0}\end{array}\right.$,則2x+y的最大值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列選項敘述錯誤的是(  )
A.命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x=1”
B.若p∨q為真命題,則p、q均為真命題
C.若命題p:?x∈R,x2+x+1≠0,則?p:?x∈R,x2+x+1=0
D.a,b,c∈R,則“ac2>bc2”是“a>b”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在△ABC中,若a=bcosC+csinB.則B=45°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.圓(x-2)2+(y+3)2=5的圓心坐標和半徑分別為( 。
A.(-2,3),5B.$(-2,3),\sqrt{5}$C.(2,-3),5D.$(2,-3),\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3,|{\overrightarrow a-2\overrightarrow b}|=2\sqrt{10}$,則$\overrightarrow a,\overrightarrow b$的夾角為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)左右頂點為A1,A2,左右焦點為F1,F(xiàn)2,P為雙曲線C上異于頂點的一動點,直線PA1斜率為k1,直線PA2斜率為k2,且k1k2=1,又△PF1F2內切圓與x軸切于點(1,0),則雙曲線方程為( 。
A.x2-y2=1B.x2-$\frac{{y}^{2}}{2}$=1C.x2-$\frac{{y}^{2}}{3}$=1D.x2-$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β均為非零實數(shù)),若f(2012)=6,則f(2013)=2.

查看答案和解析>>

同步練習冊答案