已知函數(shù)
(Ⅰ)當(dāng)時(shí),求證:函數(shù)在上單調(diào)遞增;
(Ⅱ)若函數(shù)有三個(gè)零點(diǎn),求的值;
(Ⅲ)若存在,使得,試求的取值范圍.
解:(Ⅰ)…………………………………3分
由于,故當(dāng)時(shí),,所以,
故函數(shù)在上單調(diào)遞增 ……………………………………………………………5分
(Ⅱ)當(dāng)時(shí),因?yàn)?img width=63 height=21 src="http://thumb.zyjl.cn/pic1/0677/243/83243.gif" >,且在R上單調(diào)遞增,
故有唯一解……………………………………………………………………7分
所以的變化情況如下表所示:
x | 0 | ||
- | 0 | + | |
遞減 | 極小值 | 遞增 |
又函數(shù)有三個(gè)零點(diǎn),所以方程有三個(gè)根,
而,所以,解得 ……………………………11分
(Ⅲ)因?yàn)榇嬖?img width=88 height=24 src="http://thumb.zyjl.cn/pic1/0677/257/83257.gif" >,使得,
所以當(dāng)時(shí),…………12分
由(Ⅱ)知,在上遞減,在上遞增,
所以當(dāng)時(shí),,
而,
記,因?yàn)?img width=192 height=41 src="http://thumb.zyjl.cn/pic1/0677/268/83268.gif" >(當(dāng)時(shí)取等號(hào)),
所以在上單調(diào)遞增,而,
所以當(dāng)時(shí),;當(dāng)時(shí),,
也就是當(dāng)時(shí),;當(dāng)時(shí),………………………14分
①當(dāng)時(shí),由,
②當(dāng)時(shí),由,
綜上知,所求的取值范圍為…………………………………………16分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(江西卷理22)已知函數(shù),.
.當(dāng)時(shí),求的單調(diào)區(qū)間;
.對(duì)任意正數(shù),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆陜西省師大附中、西工大附中高三第七次聯(lián)考理數(shù) 題型:解答題
(本題13分)
已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若在單調(diào)增加,在單調(diào)減少,證明:<6.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆河南省高二下學(xué)期第一次階段測(cè)試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
(1)當(dāng)時(shí),求的解集
(2)若關(guān)于的不等式的解集是,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江西省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時(shí),求的極小值;
(Ⅱ)若直線對(duì)任意的都不是曲線的切線,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省梅州市高三年級(jí)10月月考文科數(shù)學(xué)試卷 題型:解答題
(滿分14分)已知函數(shù)
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),討論的單調(diào)性
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com