已知{an}是正數(shù)組成的數(shù)列,a1=1,且點()(nN*)在函數(shù)y=x2+1的圖象上.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足b1=1,bn+1=bn+,求證:bn?bn+2<b2n+1.
解法一:
(Ⅰ)由已知得an+1=an+1、即an+1-an=1,又a1=1,
所以數(shù)列{an}是以1為首項,公差為1的等差數(shù)列.
故an=1+(n-1)×1=n.
(Ⅱ)由(Ⅰ)知:an=n從而bn+1-bn=2n.
bn=(bn-bn-1)+(bn-1-bn-2)+???+(b2-b1)+b1
=2n-1+2n-2+???+2+1
==2n-1.
因為bn?bn+2-b=(2n-1)(2n+2-1)-(2n+1-1)2
=(22n+2-2n+2-2n+1)-(22n+2-2?2n+1+1)
=-5?2n+4?2n
=-2n<0,
所以bn?bn+2<b,
解法二:
(Ⅰ)同解法一.
(Ⅱ)因為b1=1,
bn?bn+2- b=(bn+1-2n)(bn+1+2n+1)- b
=2n+1?bn+1-2n?bn+1-2n?2n+1
=2n(bn+1-2n+1)
=2n(bn+2n-2n+1)
=2n(bn-2n)
=…
=2n(b1-2)
=-2n<0,
所以bn?bn+2<b2n+1
科目:高中數(shù)學 來源: 題型:
x | 2 1 |
x | 2 2 |
x | 2 n |
a1 |
c1 |
a2 |
c2 |
a3 |
c3 |
| ||
x2 |
| ||
x3 |
| ||
xn |
| ||
x1 |
P |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源:2012年四川省眉山市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com