已知正方體ABCD-A1B1C1D1的棱長為2,線段EF,GH分別在AB,CC1上移動,且EF+GH=
1
2
,則三棱錐EFGH的體積最大值為
 
考點:棱柱、棱錐、棱臺的體積
專題:空間位置關(guān)系與距離
分析:畫出圖形,求出幾何體的體積的表達式,利用基本不等式求出幾何體體積的最大值即可.
解答: 解:VEFGH=VH-EFC-VG-EFC
=
1
3
×
1
2
×EF×BC×CH-
1
3
×
1
2
×EF×BC×CG

=
1
3
EF•GH

1
3
×(
EF+GH
2
)2

=
1
48
.(當且僅當EF=GH=
1
4
時取得最大值).
故答案為:
1
48
點評:本題考查幾何體的體積的求法,基本不等式的應(yīng)用,考查空間想象能力以及計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+ax+2(a∈R),在x=
1
2
時取得極值.
(Ⅰ)求a的值;
(Ⅱ)若F(x)=λx2-3x+2-f(x)(λ>0)有唯一零點,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動圓過定點A(4,0),且在y軸上截得的弦MN的長為8.求動圓圓心的軌跡C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某籃球隊與其他6支籃球隊依次進行6場比賽,每場均決出勝負,設(shè)這支籃球隊與其他籃球隊比賽中獲勝的事件是獨立的,并且獲勝的概率均為
1
3

(1)求這支籃球隊首次獲勝前已經(jīng)負了兩場的概率;
(2)求這支籃球隊在6場比賽中恰好獲勝3場的概率;
(3)求這支籃球隊在6場比賽中獲勝場數(shù)的均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=6x上的兩個動點A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=4.線段AB的垂直平分線與x軸交于點C.
(1)試證直線AB的垂直平分線經(jīng)過定點.
(2)設(shè)AB中點為M(x0,y0),求△ABC面積的表達式,要求用y0表示.
(3)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義函數(shù)f(x)=[x•[x]],其中[x]表示不超過x的最大整數(shù),當x∈[0,n)(n∈N*)時,設(shè)函數(shù)f(x)的值域為集合A,記A中的元素個數(shù)為an,則
an+49
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P為拋物線y2=4x上一個動點,Q為園x2+(y-3)2=1上一個動點,那么點P到點Q的距離與點P到拋物線的準線距離之和的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線經(jīng)過點P(-2,3)且傾斜角為45°,求直線的斜截式方程
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,且a-b=3,a+c=2b,又知△ABC的最大角為120°,則邊a等于
 

查看答案和解析>>

同步練習冊答案