已知函數(shù).
(1)若在區(qū)間單調(diào)遞增,求的最小值;
(2)若,對(duì),使成立,求的范圍.

(1);(2).

解析試題分析:(1)在區(qū)間單調(diào)遞增,則恒成立.
分離變量得:,所以a大于等于的最大值即可.
(2)對(duì),使,則應(yīng)有
下面就分別求出,的最大值,然后解不等式即得a的范圍.
試題解析:(1)由恒成立
得: 而單調(diào)遞減,從而,

                   6分
(2)對(duì),使
單調(diào)遞增
          8分
上單調(diào)遞減,則
                12分
考點(diǎn):導(dǎo)數(shù)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)時(shí)取得極值.
(1)求a、b的值;(2)若對(duì)于任意的,都有成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)(k為常數(shù),e=2.71828……是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與x軸平行。
(1)求k的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè),其中的導(dǎo)函數(shù),證明:對(duì)任意。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(Ⅰ)求處的切線方程;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)若,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),.
(1)若曲線在它們的交點(diǎn)處有相同的切線,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),若函數(shù)在區(qū)間內(nèi)恰有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)當(dāng),時(shí),求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)上是增函數(shù),上是減函數(shù).
(1)求函數(shù)的解析式;
(2)若時(shí),恒成立,求實(shí)數(shù)m的取值范圍;
(3)是否存在實(shí)數(shù)b,使得方程在區(qū)間上恰有兩個(gè)相異實(shí)數(shù)根,若存在,求出b的范圍,若不存在說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),為常數(shù))
(1)當(dāng)時(shí)恒成立,求實(shí)數(shù)的取值范圍;
(2)若函數(shù)有對(duì)稱中心為A(1,0),求證:函數(shù)的切線在切點(diǎn)處穿過(guò)圖象的充要條件是恰為函數(shù)在點(diǎn)A處的切線.(直線穿過(guò)曲線是指:直線與曲線有交點(diǎn),且在交點(diǎn)左右附近曲線在直線異側(cè))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(I)若,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求證:
(Ⅲ)若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為,對(duì)于任意的,函數(shù)的導(dǎo)函數(shù))在區(qū)間上總不是單調(diào)函數(shù),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè),.
(Ⅰ)當(dāng)時(shí),求曲線處的切線的方程;
(Ⅱ)如果存在,使得成立,求滿足上述條件的最大整數(shù);
(Ⅲ)如果對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案