若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
與直線y=
3
x無交點,則離心率e的取值范圍( 。
A.(1,2)B.(1,2]C.(1,
5
D.(1,
5
]
∵雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
與直線y=
3
x無交點,
∴雙曲線的漸近線方程y=±
b
a
x,滿足
b
a
3

得b≤
3
a,兩邊平方得b2≤3a2,即c2-a2≤3a2,
∴c2≤4a2,得
c2
a2
≤4即e2≤4,
∵雙曲線的離心率e為大于1的正數(shù)
∴1<e≤2,
故選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的漸近線方程為
7
x+3y=0
,兩準(zhǔn)線的距離為
9
2
,求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線:x2-
y2
4
=1
的漸近線方程和離心率分別是(  )
A.y=±
1
2
x,e=
5
B.y=±2x,e=
3
C.y=±
1
2
x,e=
3
D.y=±2x,e=
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以拋物線y2=12x的焦點為圓心,且與雙曲線
x2
16
-
y2
9
=1
的兩條漸近線相切的圓的方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線
x2
9
-
y2
16
=1
的焦點到漸近線的距離等于( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的兩條漸近線與拋物線y2=2px(p>0)的準(zhǔn)線分別交于O、A、B三點,O為坐標(biāo)原點.若雙曲線的離心率為2,△AOB的面積為
3
,則p=( 。
A.1B.
3
2
C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線x2-y2=1的漸近線方程是( 。
A.x=±1B.y=±
2
x
C.y=±xD.y=±
2
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知F為橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點,直線l過點F且與雙曲線
x2
a2
-
y2
b2
=1
的兩條漸近線l1,l2分別交于點M,N,與橢圓交于點A,B.
(Ⅰ)若∠MON=
π
3
,雙曲線的焦距為4.求橢圓方程.
(Ⅱ)若
OM
MN
=0
(O為坐標(biāo)原點),
FA
=
1
3
AN
,求橢圓的離心率e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的頂點在x軸上,兩個頂點之間的距離為8,離心率e=
5
4

(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)求雙曲線的焦點到其漸近線的距離.

查看答案和解析>>

同步練習(xí)冊答案