6.已知{an}為等比數(shù)列且滿足a6-a2=30,a3-a1=3,則數(shù)列{an}的前5項(xiàng)和S5=( 。
A.15B.31C.40D.121

分析 根據(jù)等比數(shù)列的通項(xiàng)公式列方程組求出a1公比q,再計(jì)算數(shù)列{an}的前5項(xiàng)和.

解答 解:等比數(shù)列{an}中,a6-a2=30,a3-a1=3,
∴$\left\{\begin{array}{l}{{{a}_{1}q}^{5}{-a}_{1}q=30}\\{{{a}_{1}q}^{2}{-a}_{1}=3}\end{array}\right.$,
∴$\frac{q{(q}^{4}-1)}{{q}^{2}-1}$=10,
即q(q2+1)=10,
∴q3+q-10=0,
即(q-2)(q2+2q+5)=0,
∴q-2=0或q2+2q+5=0,
解得q=2,∴a1=1;
∴數(shù)列{an}的前5項(xiàng)和為
S5=$\frac{{a}_{1}(1{-q}^{5})}{1-q}$=$\frac{1×(1{-2}^{5})}{1-2}$=31.
故選:B.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的應(yīng)用問(wèn)題,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知向量$\overrightarrow a=({1,2}),\overrightarrow b=({-3,2})$,若$({k\overrightarrow a+\overrightarrow b})∥({\overrightarrow a-3\overrightarrow b})$,則實(shí)數(shù)k的值為( 。
A.3B.$\frac{1}{3}$C.$-\frac{1}{3}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,若輸入的值是-2,則輸出的值是( 。
A.2B.4C.-2D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知點(diǎn)P是拋物線y2=2x上的動(dòng)點(diǎn),F(xiàn)為拋物線的焦點(diǎn),A($\frac{7}{2}$,4),則|PA|+|PF|的最小值是(  )
A.$\frac{7}{2}$B.5C.$\frac{9}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知點(diǎn)P(3,-2),則點(diǎn)P到直線l:3x+4y-25=0的距離為$\frac{24}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x+$\frac{4}{x}$
(1)判斷f(x)的奇偶性;
(2)判斷f(x)在(2,+∞)上的單調(diào)性并予以證明;
(3)求f(x)在[3,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,其中正確的命題有(填序號(hào))③④
①已知∠A=60°,b=4,c=2,則△ABC有兩解;
②若∠A=90°,b=3,c=4,△ABC內(nèi)有一點(diǎn)P使得$\overrightarrow{PA}$,$\overrightarrow{PB}$,$\overrightarrow{PC}$兩兩夾角為120°,則${\overrightarrow{PA}}^{2}$+${\overrightarrow{PB}}^{2}$+${\overrightarrow{PC}}^{2}$=30;
③若∠A=90°,b=1,c=$\sqrt{3}$,△ABC內(nèi)有一點(diǎn)P使得$\overrightarrow{PA}$與$\overrightarrow{PB}$夾角為90°,$\overrightarrow{PA}$與$\overrightarrow{PC}$夾角為120°,則tan∠PAC=$\frac{\sqrt{3}}{4}$;
④已知∠A=60°,b=4,設(shè)a=t,若△ABC是鈍角三角形,則t的取值范圍是(2$\sqrt{3}$,4)∪(4$\sqrt{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)[x]表示不大于x(x∈R)的最大整數(shù),集合A={x|[x]=1},B={1,2},則A∪B=( 。
A.{1}B.{1,2}C.[1,2)D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.在△ABC中,角A、B、C的對(duì)邊a,b,c滿足b2+c2=a2+bc,且bc=8,則△ABC的面積等于( 。
A.$2\sqrt{3}$B.4C.$4\sqrt{3}$D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案