若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時,函數(shù)f(x)有極值為-
4
3

(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若f(x)=k有3個解,求實數(shù)k的取值范圍.
(Ⅰ)f′(x)=3ax2-b
由題意;
f′(2)=12a-b
f(2)=8a-2b+4=-
4
3
,解得
a=
1
3
b=4
,
∴所求的解析式為f(x)=
1
3
x3-4x+4

(Ⅱ)由(1)可得f′(x)=x2-4=(x-2)(x+2)
令f′(x)=0,得x=2或x=-2,
∴當(dāng)x<-2時,f′(x)>0,當(dāng)-2<x<2時,f′(x)<0,當(dāng)x>2時,f′(x)>0
因此,當(dāng)x=-2時,f(x)有極大值
28
3
,
當(dāng)x=2時,f(x)有極小值-
4
3
,
∴函數(shù)f(x)=
1
3
x3-4x+4
的圖象大致如圖.
由圖可知:-
4
3
<k<
28
3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=x3+ax2-12x的導(dǎo)函數(shù)為f′(x),若f′(x)的圖象關(guān)于y軸對稱.
(I)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若曲線y=x3在點P(1,1)處的切線與直線ax-by-2=0互相垂直,則
a
b
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)=x3+ax2+bx+1的導(dǎo)數(shù)f′(x)滿足f′(1)=2a,f′(2)=-b,其中常數(shù)a,b∈R.
(Ⅰ)求曲線y=f(x)在點(1,f(1))處的切線方程.
(Ⅱ)設(shè)g(x)=f′(x)e-x.求函數(shù)g(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=x3-3x2+2x,若過f(x)圖象上一點P(x0,y0)(x0≠0)的切線為l:y=kx,求k的值和P的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=(ax2+bx+c)e2-x在x=1處取得極值,且在點(2,f(2))處的切線方程為6x+y-27=0.
(1)求a,b,c的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間,并指出f(x)在x=1處的極值是極大值還是極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=x3-3x2+1,則在曲線y=f(x)的切線中,斜率最小的切線方程是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)在區(qū)間(a,b)內(nèi)可導(dǎo),其導(dǎo)函數(shù)y=f'(x)的圖象如圖所示,則函數(shù)f(x)在區(qū)間(a,b)內(nèi)有( 。
A.一個極大值,一個極小值
B.一個極大值,兩個極小值
C.兩個極大值,一個極小值
D.兩個極大值,兩個極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1
3
x3+
1
2
(b-1)x2+cx.
(1)當(dāng)b=-3,c=3時,求f(x)的極值;
(2)若f(x)在(-∞,x1),(x2,+∞)上遞增,在(x1,x2)上遞減,x2-x1>1,求證:b2>2(b+2c);
(3)在(2)的條件下,若t<x1,試比較t2+bt+c與x1的大小.

查看答案和解析>>

同步練習(xí)冊答案