某同學準備用反證法證明如下問題:函數f(x)在[0,1]上有意義,且f(0)=f(1),如果對于不同的x1,x2∈[0,1]都有|f(x1)-f(x2)|<|x1-x2|,求證:|f(x1)-f(x2)|<,那么它的假設應該是( ).
A.“對于不同的x1,x2∈[0,1],都得|f(x1)-f(x2)|<|x1-x2| 則|f(x1)-f(x2)|≥”
B. “對于不同的x1,x2∈[0,1],都得|f(x1)-f(x2)|> |x1-x2| 則|f(x1)-f(x2)|≥”
C.“∃x1,x2∈[0,1],使得當|f(x1)-f(x2)|<|x1-x2| 時有|f(x1)-f(x2)|≥”
D.“∃x1,x2∈[0,1],使得當|f(x1)-f(x2)|>|x1-x2|時有|f(x1)-f(x2)|≥”
科目:高中數學 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數學 來源:2013屆河北省高二下學期考試文科數學試卷(解析版) 題型:選擇題
某同學準備用反證法證明如下問題:函數f(x)在[0,1]上有意義,且f(0)=f(1),如果對于不同的x1,x2∈[0,1]都有|f(x1)-f(x2)|<|x1-x2|,求證:|f(x1)-f(x2)|<,那么它的假設應該是( ).
A.“對于不同的x1,x2∈[0,1],都得|f(x1)-f(x2)|<|x1-x2| 則|f(x1)-f(x2)|≥”
B. “對于不同的x1,x2∈[0,1],都得|f(x1)-f(x2)|> |x1-x2| 則|f(x1)-f(x2)|≥”
C.“∃x1,x2∈[0,1],使得當|f(x1)-f(x2)|<|x1-x2| 時有|f(x1)-f(x2)|≥”
D.“∃x1,x2∈[0,1],使得當|f(x1)-f(x2)|>|x1-x2|時有|f(x1)-f(x2)|≥”
查看答案和解析>>
科目:高中數學 來源:2009-2010學年度新課標高三上學期數學單元測試12-文科-算法、復數、推理與證明 題型:填空題
某同學準備用反證法證明如下一個問題:函數在上有意義,且,如果對于不同的,都有,求證:。那么他的反設應該是___________.
查看答案和解析>>
科目:高中數學 來源:2009-2010學年度新課標高三上學期數學單元測試12-理科-算法、復數、推理與證明 題型:填空題
某同學準備用反證法證明如下一個問題:函數在上有意義,且,如果對于不同的,都有,求證:。那么他的反設應該是___________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com