若y=e|x|(x∈[a,b])的值域?yàn)閇1,e2],則點(diǎn)(a,b)的軌跡是圖中的( )

A.線(xiàn)段AB和OA
B.線(xiàn)段AB和BC
C.線(xiàn)段AB和DC
D.點(diǎn)A和點(diǎn)C
【答案】分析:根據(jù)e>1得到此指數(shù)函數(shù)為增函數(shù),根據(jù)函數(shù)值域的范圍列出x的絕對(duì)值不等式,討論x的范圍解出不等式的解集,然后根據(jù)自變量的范圍可知a和b的取值范圍,即可得到動(dòng)點(diǎn)(a,b)的軌跡.
解答:解:由y=e|x|(x∈[a,b])的值域?yàn)閇1,e2],得到0≤|x|≤2,
當(dāng)x≥0時(shí),解得x≤2,所以絕對(duì)值不等式的解集為0≤x≤2;
當(dāng)x≤0時(shí),解得x≥-2,所以絕對(duì)值不等式的解集為-2≤x≤0,
所以a∈[-2,0],b∈[0,2]
根據(jù)圖形可知(a,b)的軌跡為:線(xiàn)段AB和BC
故選B
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用指數(shù)函數(shù)的單調(diào)性化簡(jiǎn)求值,會(huì)求絕對(duì)值不等式的解集,是一道中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、若y=e|x|(x∈[a,b])的值域?yàn)閇1,e2],則點(diǎn)(a,b)的軌跡是圖中的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)將函數(shù)y=f(x)圖象向右平移一個(gè)單位即可得到函數(shù)y=φ(x)的圖象,試寫(xiě)出y=φ(x)的解析式及值域;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線(xiàn)y=kx+m為函數(shù)f(x)與g(x)的“分界線(xiàn)”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線(xiàn)”?若存在,求出“分界線(xiàn)”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)將函數(shù)y=f(x)圖象向右平移一個(gè)單位即可得到函數(shù)y=φ(x)的圖象,試寫(xiě)出y=φ(x)的解析式及值域;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線(xiàn)y=kx+m為函數(shù)f(x)與g(x)的“分界線(xiàn)”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線(xiàn)”?若存在,求出“分界線(xiàn)”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考數(shù)學(xué)綜合訓(xùn)練試卷(04)(解析版) 題型:選擇題

若y=e|x|(x∈[a,b])的值域?yàn)閇1,e2],則點(diǎn)(a,b)的軌跡是圖中的( )

A.線(xiàn)段AB和OA
B.線(xiàn)段AB和BC
C.線(xiàn)段AB和DC
D.點(diǎn)A和點(diǎn)C

查看答案和解析>>

同步練習(xí)冊(cè)答案