【題目】已知定義在上的函數(shù)是奇函數(shù)

(1)求實(shí)數(shù),的值;

(2)判斷的單調(diào)性并用函數(shù)的單調(diào)性定義證明你的結(jié)論

【答案】(1),(2)單調(diào)遞減,證明見(jiàn)解析

【解析】

試題分析:(1)由函數(shù)定義域?yàn)?/span>且是奇函數(shù),得到對(duì)于任意恒成立,列出方程,即可求解的值(2)由(1)可得函數(shù)的解析式為,在定義域上為單調(diào)減函數(shù),根據(jù)函數(shù)的單調(diào)性的定義即可作差證明.

試題解析:(1)因?yàn)?/span>定義域?yàn)?/span>且是奇函數(shù),

對(duì)于任意恒成立,

即有對(duì)于任意恒成立,

于是有解得,

的定義域?yàn)?/span>,所以,故所求實(shí)數(shù),的值分別為

(2)由(1)可得函數(shù)的解析式為,在定義域上為單調(diào)減函數(shù)

用函數(shù)的單調(diào)性定義證明如下:

在定義域上任取兩個(gè)自變量的值,且,

,

,

,,故有,即有,

因此,根據(jù)函數(shù)單調(diào)性的定義可知,函數(shù)在定義域上為減函數(shù)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)平面α∩β=EF,AB⊥α,CD⊥α,垂足分別是B,D,如果增加一個(gè)條件,就能推出BD⊥EF,這個(gè)條件不可能是下面四個(gè)選項(xiàng)中的 (  )

A. AC⊥β

B. AC⊥EF

C. AC與BD在β內(nèi)的射影在同一條直線上

D. AC與α,β所成的角相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)(x3)ex的單調(diào)遞增區(qū)間是(  )

A. (1,4) B. (0,3) C. (2,+∞) D. (,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面說(shuō)法正確的有

①演繹推理是由一般到特殊的推理;

②演繹推理得到的結(jié)論一定是正確的;

③演繹推理的一般模式是三段論;

④演繹推理的結(jié)論的正誤與大前提、小前提和推理形式有關(guān).

A. 1個(gè) B. 2個(gè)

C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右頂點(diǎn)為、,左右焦點(diǎn)為,其長(zhǎng)半軸的長(zhǎng)等于焦距,點(diǎn)是橢圓上的動(dòng)點(diǎn),面積的最大值為

1求橢圓的方程;

2設(shè)為直線上不同于點(diǎn)的任意一點(diǎn),若直線、分別與橢圓交于異于、的點(diǎn),判斷點(diǎn)與以為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司采用招考方式引進(jìn)人才,規(guī)定必須在,三個(gè)測(cè)試點(diǎn)中任意選取兩個(gè)進(jìn)行測(cè)試,若在這兩個(gè)測(cè)試點(diǎn)都測(cè)試合格,則可參加面試,否則不被錄用,已知考生在每測(cè)試個(gè)點(diǎn)測(cè)試結(jié)果互不影響,若考生小李和小王起前來(lái)參加招考,小李在測(cè)試點(diǎn)測(cè)試合格的概率分別為,小王在上述三個(gè)測(cè)試點(diǎn)測(cè)試合格的概率都是.

(1)問(wèn)小李選擇哪兩個(gè)測(cè)試點(diǎn)測(cè)試才能使得可以參加面試的可最大請(qǐng)說(shuō)明理由;

(2)假設(shè)小李選測(cè)試點(diǎn)進(jìn)行測(cè)試,小王選擇測(cè)試點(diǎn)進(jìn)行測(cè)試,為兩人在各測(cè)試點(diǎn)測(cè)試合格的測(cè)試點(diǎn)個(gè)數(shù)之和,機(jī)變的分布列及數(shù)學(xué).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).

(1)求的取值范圍;

(2)設(shè)兩個(gè)極值點(diǎn)分別為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象過(guò)點(diǎn),且在點(diǎn)處的切線方程

(1)求函數(shù)的解析式;

(2)求函數(shù)的圖像有三個(gè)交點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線y2x2上一點(diǎn)A(2,8),則在點(diǎn)A處的切線斜率為 ( )

A. 4 B. 16

C. 8 D. 2

查看答案和解析>>

同步練習(xí)冊(cè)答案