函數(shù)f(x)=
x-1
+(x-2)0的定義域為( 。
A、{x|x≠2}
B、[1,2)∪(2,+∞)
C、{x|x>1}
D、[1,+∞)
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)二次根式的性質(zhì)結(jié)合指數(shù)冪的性質(zhì)列不等式組解出即可.
解答: 解:由題意得:
x-1≥0
x-2≠0
,解得:x≥1或x≠2,
故選:B.
點評:本題考查了函數(shù)的定義域問題,考查了二次根式的性質(zhì)以及指數(shù)冪的性質(zhì),是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

知F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>0,b>0)的左、右焦點,橢圓C過點(-
3
,1)
且與拋物線y2=-8x有一個公共的焦點.
(1)求橢圓C方程;
(2)直線l過橢圓C的右焦點F2且斜率為1與橢圓C交于A,B兩點,求弦AB的長;
(3)以第(2)題中的AB為邊作一個等邊三角形ABP,求點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
14
23

(1)求A的逆矩陣A-1;
(2)求A的特征值及對應(yīng)的特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sinx的圖象先向右平移
π
3
個單位,然后縱坐標(biāo)保持不變,橫坐標(biāo)伸長2倍后,得到y(tǒng)=g(x)的圖象,則y=g(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos(-
17π
4
 
sin(-
17π
4
)(填“>”或“<”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐P-ABC,其中PA=PB=PC=2,D為棱PB中點,平面ACD⊥平面PBC,平面ACD⊥平面PAB,則三棱錐P-ABC體積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下四個命題中,真命題的個數(shù)是( 。
①“若a+b≥2則a,b中至少有一個不小于1”的逆命題;
②存在正實數(shù)a,b,使得lg(a+b)=lga+lgb;
③“所有奇數(shù)都是素數(shù)”的否定是“至少有一個奇數(shù)不是素數(shù)”;
④在△ABC中,A<B是sinA<sinB的充分不必要條件.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+(y-1)2=5,
(1)求過點M(3,2)且與圓相切的直線方程;
(2)若直線l:mx-y-m+1=0,與圓C相交于A、B兩點,且|AB|=
17
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2+2(a-1)x+2在區(qū)間(-∞,4]上遞減,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案