若a,b∈R,則成立的一個(gè)充分非必要條件是

[  ]

A.a(chǎn)>b
B.a(chǎn)b(a-b)<0
C.a(chǎn)<b<0
D.a(chǎn)<b
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列類比推理命題(其中Q為有理數(shù)集,R為實(shí)數(shù)集,C為復(fù)數(shù)集):
①“若a,b∈R,則a-b=0?a=b”類比推出“若a,b∈C,則a-b=0?a=b”;
②“若a,b,c,d∈R,則復(fù)數(shù)a+bi=c+di?a=c,b=d”類比推出“若a,b,c,d∈Q,則a+b
2
=c+d
2
?a=c,b=d
”;
③“若a,b∈R,則a-b>0?a>b”類比推出“若a,b∈C,則a-b>0?a>b”.
其中類比結(jié)論正確的個(gè)數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下面類比推理命題(其中Q為有理數(shù)集,R為實(shí)數(shù)集,C為復(fù)數(shù)集)
①“若a,b∈R,則a-b=0?a=b”類比推出“若a,b∈C,則a-b=0?a=b”;
②“若a,b,c,d∈R,則復(fù)數(shù)a+bi=c+di?a=c,b=d”,類比推出“若a,b,c,d∈Q,則a+b
2
=c+d
2
?a=c,b=d
”;
③“若a,b∈R,則a-b>0?a>b”類比推出“若a,b∈C,則a-b>0?a>b”;
④“若x∈R,則|x|<1?-1<x<1”類比推出“若x∈C,則|z|<1?-1<z<1
其中類比結(jié)論正確的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=a2x-
1
2
x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則
a+b
2
ab
(當(dāng)且僅當(dāng)a=b時(shí)取等號)”推廣到三個(gè)正數(shù)時(shí)結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測y=f(x)的單調(diào)性(無需證明);
(3)對滿足(2)的條件的一個(gè)常數(shù)a,設(shè)x=x1時(shí),f(x)取得最大值.試構(gòu)造一個(gè)定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時(shí),g(x)=f(x),當(dāng)x∈D時(shí),g(x)取得最大值的自變量的值構(gòu)成以x1為首項(xiàng)的等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-1≤x≤0},集合B={x|ax+b•2x-1<0,0≤a≤2,1≤b≤3}.若a,b∈N,則A∩B≠∅的概率為
 
;若a,b∈R,則A∩B=∅的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•無錫二模)若a,b∈R,則使|a|+|b|<1成立的一個(gè)充分不必要條件是( 。

查看答案和解析>>

同步練習(xí)冊答案