如圖,在四棱錐中,底面是矩形,側(cè)棱⊥底面,,是的中點,為的中點.
(1)證明:平面
(2)若為直線上任意一點,求幾何體的體積;
科目:高中數(shù)學(xué) 來源: 題型:解答題
AB為圓O的直徑,點E、F在圓上,AB//EF,矩形ABCD所在平面與圓O所在平面互相垂直,已知AB=2,BC=EF=1。
(I)求證:BF⊥平面DAF;
(II)求多面體ABCDFE的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直線A1B上.
(1)求證:平面A1BC⊥平面ABB1A1;
(2)若,AB=BC=2,P為AC中點,求三棱錐的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C、D的點,AE=3,正方形ABCD的邊長為.
(1)求證:平面ABCD丄平面ADE;
(2)求四面體BADE的體積;
(3)試判斷直線OB是否與平面CDE垂直,并請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,在Rt中, ,.D、E分別是上的點,且.將沿折起到的位置,使,如圖2.
(Ⅰ)求證:平面;
(Ⅱ)若,求與平面所成角的正弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,矩形ABCD中,AB=3,BC=4.E,F(xiàn)分別在線段BC和AD上,EF//AB,將矩形ABEF沿EF折起.記折起后的矩形為MNEF,且平面MNEF⊥平面ECDF.
(1)求證:NC∥平面MFD;
(2)若EC=3,求證:ND⊥FC;
(3)求四面體NFEC體積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如下圖所示,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.
(1)求證:AC⊥BC1;
(2)求證:AC1∥平面CDB1;
(3)求異面直線AC1與B1C所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在如圖所示的多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G為AD中點.
(1)請在線段CE上找到點F的位置,使得恰有直線BF∥平面ACD,并證明這一事實;
(2)求平面BCE與平面ACD所成銳二面角的大。
(3)求點G到平面BCE的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com