8.橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上一點P到它的一個焦點的距離等于2,那么點P到另一個焦點的距離等于2.

分析 根據題意,由橢圓的標準方程可得a的值,由橢圓的定義可得橢圓上一點P到它的2個焦點的距離之和為2a=4,結合題意即可得答案.

解答 解:根據題意,橢圓的標準方程為:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,
則其焦點在x軸上,且a=$\sqrt{4}$=2,
若橢圓上一點P到它的一個焦點的距離等于2,那么點P到另一個焦點的距離為2a-2=2,
故答案為:2.

點評 本題考查橢圓的定義,關鍵是從橢圓的方程中求出a的值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=2cos($\frac{π}{2}$-x)cos(x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$.
(Ⅰ)求函數(shù)f(x)的最小正周期和單調遞減區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)y=f(x)(x∈R)圖象過點(e,0),f'(x)為函數(shù)f(x)的導函數(shù),e為自然對數(shù)的底數(shù),若x>0時,xf'(x)<2恒成立,則不等式f(x)+2≥2lnx解集為(0,e].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知雙曲線的漸近線方程為$y=±\sqrt{3}x$,一個焦點為$(0,-2\sqrt{2})$,則雙曲線的標準方程是$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{2}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖的程序框圖所描述的算法,若輸入m=209,n=121,則輸出的m的值為( 。
A.0B.11C.22D.88

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.當三條直線l1:3x+my-1=0,l2:3x-2y-5=0,l3:6x+y-5=0不能圍成三角形時,實數(shù)m的取值是±2或$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=1,
(1)若|$\overrightarrow{a}$-$\overrightarrow$|=2,試求$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦值.
(2)若對一切實數(shù)x,|$\overrightarrow{a}$+x$\overrightarrow$|≥|$\overrightarrow{a}$+$\overrightarrow$|恒成立,求$\overrightarrow{a}$與$\overrightarrow$的夾角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若a>b,則下列正確的是(  )
①a2>b2    
②ac>bc    
③ac2>bc2   
④a-c>b-c.
A.B.②③C.①④D.①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列函數(shù)中,是奇函數(shù)且在區(qū)間(-1,0)內單調遞減的函數(shù)是( 。
A.y=2-xB.y=x-$\frac{1}{x}$C.y=-$\frac{1}{{x}^{2}}$D.y=-tanx

查看答案和解析>>

同步練習冊答案