袋子里有大小相同的3個紅球和4個黑球,今從袋子里隨機取球.
(Ⅰ)若有放回地摸出4個球,求取出的紅球數(shù)小于黑球數(shù)的概率P;
(Ⅱ)若無放回地摸出4個球,求取出的紅球數(shù)ξ的概率分布列和數(shù)學期望.
分析:(I)取出的紅球數(shù)小于黑球數(shù)包括摸出的黑球個數(shù)為3、4,有放回地摸出4個球,相互之間沒有影響,而摸一次能夠摸到黑球的概率是
,利用獨立重復試驗的概率公式寫出結果.
(II)由題意知隨機變量ξ的所有取值為0,1,2,3.結合變量對應的事件和等可能事件的概率寫出變量的概率和分布列求出期望值.
解答:解:(I)依題意知取出的紅球數(shù)小于黑球數(shù),則摸出的黑球個數(shù)為3、4,
∵有放回地摸出4個球,相互之間沒有影響,
而摸一次能夠摸到黑球的概率是
∴
P=()3+()4=
(II)由題意知隨機變量ξ的所有取值為0,1,2,3.
P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,
P(ξ=3)==∴ξ的分布列是:
∴
Eξ=0×+1×+2×+3×= 點評:本題考查離散型隨機變量的分布列和期望,本題解題的關鍵是對于條件中所給的又放回的模四個球要引起注意.