【題目】在直角坐標系xOy中,圓C1和C2的參數(shù)方程分別是 (φ為參數(shù))和 (φ為參數(shù)),以O(shè)為極點,x軸的正半軸為極軸建立極坐標系.
(1)求圓C1和C2的極坐標方程;
(2)射線OM:θ=a與圓C1的交點為O、P,與圓C2的交點為O、Q,求|OP||OQ|的最大值.
【答案】
(1)解:圓C1 (φ為參數(shù)),
轉(zhuǎn)化成直角坐標方程為:(x﹣2)2+y2=4
即:x2+y2﹣4x=0
轉(zhuǎn)化成極坐標方程為:ρ2=4ρcosθ
即:ρ=4cosθ
圓C2 (φ為參數(shù)),
轉(zhuǎn)化成直角坐標方程為:x2+(y﹣1)2=1
即:x2+y2﹣2y=0
轉(zhuǎn)化成極坐標方程為:ρ2=2ρsinθ
即:ρ=2sinθ
(2)解:射線OM:θ=α與圓C1的交點為O、P,與圓C2的交點為O、Q
則:P(2+2cosα,2sinα),Q(cosα,1+sinα)
則:|OP|= = ,
|OQ|= =
則:|OP||OQ|=
=
設(shè)sinα+cosα=t( )
則:
則關(guān)系式轉(zhuǎn)化為:
4 =
由于:
所以:(|OP||OQ|)max=
【解析】(1)首先把兩圓的參數(shù)方程轉(zhuǎn)化成直角坐標方程,再把直角坐標方程為轉(zhuǎn)化成極坐標方程.(2)根據(jù)圓的坐標形式.利用兩點間的距離公式,再利用換元法進一步求出最值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓的半徑為2,點是圓的六等分點中的五個點.
(1)從中隨機取三點構(gòu)成三角形,求這三點構(gòu)成的三角形是直角三角形的概率;
(2)在圓上隨機取一點,求的面積大于的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= 為R的單調(diào)函數(shù),則實數(shù)a的取值范圍是( )
A.(0,+∞)
B.[﹣1,0)
C.(﹣2,0)
D.(﹣∞,﹣2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當(dāng)20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時,求函數(shù)v(x)的表達式;
(2)當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱柱中, 平面, , , , , 為的中點.
(Ⅰ)求四棱錐的體積;
(Ⅱ)設(shè)點在線段上,且直線與平面所成角的正弦值為,求線段的長度;
(Ⅲ)判斷線段上是否存在一點,使得?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某糧庫擬建一個儲糧倉如圖所示,其下部是高為2的圓柱,上部是母線長為2的圓錐,現(xiàn)要設(shè)計其底面半徑和上部圓錐的高,若設(shè)圓錐的高為,儲糧倉的體積為.
(1)求關(guān)于的函數(shù)關(guān)系式;(圓周率用表示)
(2)求為何值時,儲糧倉的體積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從2名男生和2名女生中任意選擇兩人在星期六、星期日參加某公益活動,每天一人,則星期六安排一名男生、星期日安排一名女生的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:直線,一個圓與軸正半軸與軸正半軸都相切,且圓心到直線的距離為.
()求圓的方程.
()是直線上的動點, , 是圓的兩條切線, , 分別為切點,求四邊形的面積的最小值.
()圓與軸交點記作,過作一直線與圓交于, 兩點, 中點為,求最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com