12.在△ABC中,sinA+sinC=psinB(p∈R),且ac=$\frac{1}{4}$b2
(Ⅰ)當(dāng)p=$\frac{5}{4}$,b=1時(shí),求a,c的值;
(Ⅱ)若角B為銳角,求p的取值范圍.

分析 (Ⅰ)利用正弦定理把題設(shè)等式中的角的正弦轉(zhuǎn)化成邊,解方程組求得a和c的值.
(Ⅱ)先利用余弦定理求得a,b和c的關(guān)系,把題設(shè)等式代入表示出p2,進(jìn)而利用cosB的范圍確定p2的范圍,進(jìn)而確定pd 范圍.

解答 解:(I)由題設(shè)并利用正弦定理,得$\left\{\begin{array}{l}{a+c=\frac{5}{4}}\\{ac=\frac{1}{4}}\end{array}\right.$,
故可知a,c為方程x2-$\frac{5}{4}$x+$\frac{1}{4}$=0的兩根,
解得$\left\{\begin{array}{l}{a=1}\\{c=\frac{1}{4}}\end{array}\right.$或$\left\{\begin{array}{l}{a=\frac{1}{4}}\\{c=1}\end{array}\right.$,
(II)由余弦定理,b2=a2+c2-2accosB=(a+c)2-2ac-2accosB=p2b2-$\frac{1}{2}^{2}$-$\frac{1}{2}^{2}$cosB,
即p2=$\frac{3}{2}$$+\frac{1}{2}$cosB,
因?yàn)?<cosB<1,可得:p2∈($\frac{3}{2}$,2),p>0,
所以:$\frac{\sqrt{6}}{2}<p<\sqrt{2}$.

點(diǎn)評(píng) 本題主要考查了解三角形問題,考查了對(duì)正弦定理和余弦定理的公式及變形公式熟練應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.三棱錐A-PBC中,D是線段PC上一點(diǎn),且AD⊥面BPC,AC=2,BC=3,AB=$\sqrt{7}$,E是BC上一點(diǎn),且CE=1.
(1)求證:BC⊥面ADE;
(2)若∠ACP和∠BCP互余,求直線AB和面BPC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知分段函數(shù)f(x)是奇函數(shù),當(dāng)x∈[0,+∞)時(shí)的解析式為y=x2,則這個(gè)函數(shù)在區(qū)間(-∞,0)上的解析式為y=-x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=x${\;}^{\frac{1}{2{m}^{2}+2m+1}}$(m∈N*)的奇偶性為( 。
A.奇函數(shù)非偶函數(shù)B.偶函數(shù)非奇函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既非偶函數(shù)又非奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在區(qū)間[1,5]和[2,4]分別取一個(gè)數(shù),記為a,b,則方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$表示焦點(diǎn)在y軸上且離心率小于$\frac{{\sqrt{3}}}{2}$的橢圓的概率為(  )
A.$\frac{3}{8}$B.$\frac{15}{32}$C.$\frac{1}{2}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在二項(xiàng)式($\sqrt{x}$+$\frac{1}{2\root{4}{x}}$)n的展開式中,只有第五項(xiàng)的二項(xiàng)式系數(shù)最大,把展開式中所有的項(xiàng)重新排成一列,則有理項(xiàng)不相鄰的概率為(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知二次函數(shù)f(x)=ax2+bx+1(a>0)滿足f(-1)=0,且對(duì)任意實(shí)數(shù)x均有f(x)≥0成立.
(1)求f(x)的表達(dá)式;
(2)當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,D為邊BC上任意一點(diǎn),$\overrightarrow{AD}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,則λμ的最大值為(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-2y≥0\\ x+y≥0\\ 2x+y≤1.\end{array}\right.$則z=x+2y的最小值為(  )
A.5B.3C.1D.-1

查看答案和解析>>

同步練習(xí)冊(cè)答案