中 ,,以點(diǎn)為一個(gè)焦點(diǎn)作一個(gè)橢圓,使這個(gè)橢圓
的另一焦點(diǎn)在邊上,且這個(gè)橢圓過兩點(diǎn),則這個(gè)橢圓的焦距長為     

試題分析:因?yàn)轭}意中,在中 ,,以點(diǎn)為一個(gè)焦點(diǎn)作一個(gè)橢圓,使這個(gè)橢圓的另一焦點(diǎn)在邊上,且這個(gè)橢圓過兩點(diǎn),設(shè)另一個(gè)焦點(diǎn)為D,則設(shè)BD=X,因?yàn)锳D=1-X,在三角形ACD中,則AC+CD=2A=BC+BD,可得2-x=x+,x=.在三角形CAD中,則1+(1-x)2=(2c)2,那么可知焦距的長為
點(diǎn)評(píng):關(guān)鍵是理解題意,根據(jù)題意能繪出圖形,然后根據(jù)橢圓的定義,以及直角三角形的邊長的關(guān)系來得到焦距,屬于中檔題 。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在平面直角坐標(biāo)系中,橢圓的焦距為2,且過點(diǎn).
求橢圓的方程;
若點(diǎn),分別是橢圓的左、右頂點(diǎn),直線經(jīng)過點(diǎn)且垂直于軸,點(diǎn)是橢圓上異于的任意一點(diǎn),直線于點(diǎn)

(ⅰ)設(shè)直線的斜率為直線的斜率為,求證:為定值;
(ⅱ)設(shè)過點(diǎn)垂直于的直線為.求證:直線過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)設(shè)橢圓E: (a,b>0)過M(2,) ,N(,1)兩點(diǎn),O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交A,B且?若存在,寫出該圓的方程,若不存在說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求
面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線軸交于點(diǎn),與直線交于點(diǎn),橢圓為左頂點(diǎn),以為右焦點(diǎn),且過點(diǎn),當(dāng)時(shí),橢圓的離心率的范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上,以點(diǎn)為圓心的圓與軸相切,且同時(shí)與軸相切于橢圓的右焦點(diǎn),則橢圓的離心率為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過雙曲線的左焦點(diǎn)作斜率為1的直線,該直線與雙曲線的兩條漸近線的交點(diǎn)分別為A、B,若,則雙曲線的漸近線方程為(  )
A.                 B.
C.                D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)重合.
(Ⅰ)求拋物線的方程;
(Ⅱ)求拋物線的準(zhǔn)線與雙曲線的漸近線圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)的坐標(biāo)分別是,直線相交于點(diǎn),且直線與直線的斜率之差是,則點(diǎn)的軌跡方程是(   )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案