【題目】(本小題滿分12)

已知函數(shù)(其中a是實(shí)數(shù)).

(1)求的單調(diào)區(qū)間;

(2)若設(shè),且有兩個(gè)極值點(diǎn) ,求取值范圍.(其中e為自然對(duì)數(shù)的底數(shù)).

【答案】(1)詳見解析(2) ,

【解析】試題分析:(1)求出的定義域,,由此利用導(dǎo)數(shù)性質(zhì)和分類討論思想能求出的單調(diào)區(qū)間.

(2)推導(dǎo)出,令,,則恒成立,由此能求出的取值范圍

試題解析:(1) (其中是實(shí)數(shù)),

的定義域

,=-16,對(duì)稱軸,

當(dāng)=-160,即-4時(shí),,

函數(shù)的單調(diào)遞增區(qū)間為,無(wú)單調(diào)遞減區(qū)間,

當(dāng)=-160,

,則恒成立,

的單調(diào)遞增區(qū)間為,無(wú)單調(diào)遞減區(qū)間。

4,,得

=,=

當(dāng)(0,)(,+時(shí),當(dāng))時(shí),

的單調(diào)遞增區(qū)間為(0,),(),單調(diào)遞減區(qū)間為(

綜上所述當(dāng)時(shí),的單調(diào)遞增區(qū)間為,無(wú)單調(diào)遞減區(qū)間,

當(dāng)時(shí),的單調(diào)遞增區(qū)間為(0,)和(),單調(diào)遞減區(qū)間為(

(2)(1)知,若有兩個(gè)極值點(diǎn),則4,且,,,,,

,解得

, 恒成立

單調(diào)遞減,

的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的奇偶性;

(2)當(dāng)時(shí),求函數(shù)在區(qū)間上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1中,E是DD1的中點(diǎn).

(1)求證:BD1∥平面AEC.
(2)求異面直線BC1與AC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】423日是世界讀書日,惠州市某中學(xué)在此期間開展了一系列的讀書教育活動(dòng)。為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查。下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為讀書迷,低于60分鐘的學(xué)生稱為非讀書迷

)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為讀書迷與性別有關(guān)?

)將頻率視為概率,現(xiàn)在從該校大量學(xué)生中用隨機(jī)抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中讀書迷的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、數(shù)學(xué)期望和方差

附:


0.100

0.050

0.025

0.010

0.001


2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,點(diǎn)D是AB的中點(diǎn).求證:
(1)AC⊥BC1;
(2)AC1∥平面B1CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: (a>b>0 ) 經(jīng)過點(diǎn) P(1, ),離心率 e=
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程.
(Ⅱ)設(shè)過點(diǎn)E(0,﹣2 ) 的直線l 與C相交于P,Q兩點(diǎn),求△OPQ 面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象過原點(diǎn),且在處取得極值,直線與曲線在原點(diǎn)處的切線互相垂直.

求函數(shù)的解析式;

若對(duì)任意實(shí)數(shù)的,恒有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式ax2+bx﹣1<0的解集為{x|﹣1<x<2}.
(1)計(jì)算a、b的值;
(2)求解不等式x2﹣ax+b>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是平行四邊形ABCD所在平面外一點(diǎn),E是PD的中點(diǎn).
(1)求證:PB∥平面EAC;
(2)若M是CD上異于C、D的點(diǎn).連結(jié)PM交CE于G,連結(jié)BM交AC于H,求證:GH∥PB.

查看答案和解析>>

同步練習(xí)冊(cè)答案