【題目】已知函數(shù)f(x)對(duì)定義域內(nèi)R內(nèi)的任意x都有f(x)=f(4﹣x),且當(dāng)x≠2時(shí),其導(dǎo)數(shù)f'(x)滿足xf'(x)>2f'(x),若2<a<4,則( )
A.
B.
C.
D.
【答案】B
【解析】解:∵函數(shù)f(x)對(duì)定義域R內(nèi)的任意x都有f(x)=f(4﹣x), ∴f(x)關(guān)于直線x=2對(duì)稱;
又當(dāng)x≠2時(shí)其導(dǎo)函數(shù)f′(x)滿足xf′(x)>2f′(x)f′(x)(x﹣2)>0,
∴當(dāng)x>2時(shí),f′(x)>0,f(x)在(2,+∞)上的單調(diào)遞增;
同理可得,當(dāng)x<2時(shí),f(x)在(﹣∞,2)單調(diào)遞減;
∵2<a<4,
令g(x)= ,x∈(2,4),則g′(x)= ,
令g′(x)>0,解得:x>e,令g′(x)<0,解得:x<e,
故g(x)在(2,e)遞減,在(e,4)遞增,
故g(x)的最大值是g(2)=g(4)= ,最小值是g(e)= ;
令h(x)= ,則h′(x)= ,
故h(x)在(2,e)遞增,在(e,4)遞減,
故h(x)的最小值是h(2)=h(4)= ,h(x)的最大值是h(e)= ,
故2> > > > ,
∴f( )<f ,
而2x>4,故f(2x)>f(0),
∴f( )<f <f(2x),
故選:B.
由f(x)=f(4﹣x),可知函數(shù)f(x)關(guān)于直線x=2對(duì)稱,由xf′(x)>2f′(x),可知f(x)在(﹣∞,2)與(2,+∞)上的單調(diào)性,從而可得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校有2500名學(xué)生,其中高一1000人,高二900人,高三600人,為了了解學(xué)生的身體健康狀況,采用分層抽樣的方法,若從本校學(xué)生中抽取100人,從高一和高三抽取樣本數(shù)分別為a,b,且直線ax+by+8=0與以A(1,﹣1)為圓心的圓交于B,C兩點(diǎn),且∠BAC=120°,則圓C的方程為( )
A.(x﹣1)2+(y+1)2=1
B.(x﹣1)2+(y+1)2=2
C.(x﹣1)2+(y+1)2=
D.(x﹣1)2+(y+1)2=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2c﹣a=2bcosA.
(1)求角B的大小;
(2)若b=2 ,求a+c的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】宋元時(shí)期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問(wèn)題,松長(zhǎng)五尺,竹長(zhǎng)兩尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等,如圖是源于其思想的一個(gè)程序框圖,若輸入的a=10,b=4,則輸出的n=( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的圓柱O1O2中,等腰梯形ABCD內(nèi)接于下底面圓O1 , AB∥CD,且AB為圓O1的直徑,EA和FC都是圓柱O1O2的母線,M為線段EF的中點(diǎn).
(1)求證:MO1∥平面BCF;
(2)已知BC=1,∠ABC=60°,且直線AF與平面ABC所成的角為30°,求平面MAB與平面EAD所成的角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn+2=2an , 等差數(shù)列{bn}的前n項(xiàng)和為Tn , 且T2=S2=b3 .
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)令 ,求數(shù)列{cn}的前n項(xiàng)和Rn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視臺(tái)推出一檔游戲類綜藝節(jié)目,選手面對(duì)1﹣5號(hào)五扇大門,依次按響門上的門鈴,門鈴會(huì)播放一段音樂(lè),選手需正確回答這首歌的名字,回答正確,大門打開,并獲得相應(yīng)的家庭夢(mèng)想基金,回答每一扇門后,選手可自由選擇帶著目前的獎(jiǎng)金離開,還是繼續(xù)挑戰(zhàn)后面的門以獲得更多的夢(mèng)想基金,但是一旦回答錯(cuò)誤,游戲結(jié)束并將之前獲得的所有夢(mèng)想基金清零;整個(gè)游戲過(guò)程中,選手有一次求助機(jī)會(huì),選手可以詢問(wèn)親友團(tuán)成員以獲得正確答案. 1﹣5號(hào)門對(duì)應(yīng)的家庭夢(mèng)想基金依次為3000元、6000元、8000元、12000元、24000元(以上基金金額為打開大門后的累積金額,如第三扇大門打開,選手可獲基金總金額為8000元);設(shè)某選手正確回答每一扇門的歌曲名字的概率為pi(i=1,2,…,5),且pi= (i=1,2,…,5),親友團(tuán)正確回答每一扇門的歌曲名字的概率均為 ,該選手正確回答每一扇門的歌名后選擇繼續(xù)挑戰(zhàn)后面的門的概率均為 ;
(1)求選手在第三扇門使用求助且最終獲得12000元家庭夢(mèng)想基金的概率;
(2)若選手在整個(gè)游戲過(guò)程中不使用求助,且獲得的家庭夢(mèng)想基金數(shù)額為X(元),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x﹣alnx,g(x)=﹣ ,其中a∈R
(1)設(shè)函數(shù)h(x)=f(x)﹣g(x),求函數(shù)h(x)的單調(diào)區(qū)間;
(2)若存在x0∈[1,e],使得f(x0)<g(x0)成立,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com