【題目】下列四個命題:
①函數(shù)的最大值為1;
②“若,則”的逆命題為真命題;
③若為銳角三角形,則有;
④“”是“函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的充分必要條件.
其中所有正確命題的序號為____________.
【答案】③④
【解析】
利用二倍角公式化簡函數(shù),可得,根據(jù)正弦型函數(shù)值域可知①錯誤;確定原命題的逆命題后,通過可知逆命題為假,②錯誤;利用誘導(dǎo)公式和角的范圍可證得結(jié)論,③正確;分類討論去掉函數(shù)中的絕對值符號,根據(jù)二次函數(shù)的性質(zhì)可確定函數(shù)的單調(diào)性,從而得到滿足題意的范圍,進而說明充要條件成立,④正確.
① ,①錯誤
②“若,則”的逆命題為:“若,則”
若,可知,則其逆命題為假命題,②錯誤
③為銳角三角形 ,,
且
同理可得:,
,③正確
④令,解得:,
當時,對恒成立
對稱軸為 在上單調(diào)遞增,充分條件成立
當時,,此時在上單調(diào)遞減,不滿足題意
“”是“在區(qū)間內(nèi)單調(diào)遞增”的充分必要條件,④正確
本題正確結(jié)果:③④
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過函數(shù)的圖象上一點作傾斜角互補的兩條直線,分別與交與異于的,兩點.
(1)求證:直線的斜率為定值;
(2)如果,兩點的橫坐標均不大于0,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是奇函數(shù),其中a>1.
(1)求實數(shù)m的值;
(2)討論函數(shù)f(x)的增減性;
(3)當時,f(x)的值域是(1,+∞),求n與a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)F1,F2是橢圓C:(a>b>0)的左、右焦點,直線y=kx(k>0)與橢圓C交于A,B.已知橢圓C的焦距是2,四邊形AF1BF2的周長是4.
(1)求橢圓C的方程;
(2)直線AF1,BF1分別與橢圓C交于M,N,求△MNF1面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面四邊形ABCD中,E、F是AD、BD中點,AB=AD=CD=2, BD=2 ,∠BDC=90°,將△ABD沿對角線BD折起至△,使平面⊥平面BCD,則四面體中,下列結(jié)論不正確是 ( )
A. EF∥平面
B. 異面直線CD與所成的角為90°
C. 異面直線EF與所成的角為60°
D. 直線與平面BCD所成的角為30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,平面ABCD,四邊形ABCD是矩形,且,,E是棱BC上的動點,F是線段PE的中點.
(Ⅰ)求證:平面ADF;
(Ⅱ)若直線DE與平面ADF所成角為30°,求EC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘數(shù)學(xué)家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,他證明過這樣一個命題:平面內(nèi)與兩定點距離的比為常數(shù)k(k>0,k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.在平面直角坐標系中,設(shè)A(﹣3,0),B(3,0),動點M滿足=2,則動點M的軌跡方程為()
A. (x﹣5)2+y2=16B. x2+(y﹣5)2=9
C. (x+5)2+y2=16D. x2+(y+5)2=9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (是自然對數(shù)的底數(shù))
(1)求證:
(2)若不等式在上恒成立,求正數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com