如圖所示的多面體是由底面為ABCD的長(zhǎng)方體被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1.

(Ⅰ)求BF的長(zhǎng);

(Ⅱ)求點(diǎn)C到平面AEC1F的距離.

答案:
解析:

  本小題主要考查線面關(guān)系和空間距離的求法等基礎(chǔ)知識(shí),同時(shí)考查空間想象能力和推理運(yùn)算能力.

  解法1:(Ⅰ)過(guò)E作EH∥BC交CC1于H,則CH=BE=1,EH∥AD,且EH=AD.

  又∵AF∥EC1,∴∠FAD=∠C1EH.

  ∴Rt△ADF≌Rt△EHC1.∴DF=C1H=2.

  

  (Ⅱ)延長(zhǎng)C1E與CB交于G,連AG,則平面AEC1F與平面ABCD相交于AG.

  過(guò)C作CM⊥AG,垂足為M,連C1M,由三垂線定理可知AG⊥C1M.由于AG⊥面C1MC,且AG面AEC1F,所以平面AEC1F⊥面C1MC.在Rt△C1CM中,作CQ⊥MC1,垂足為Q,則CQ的長(zhǎng)即為C到平面AEC1F的距離.

  

  解法2:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系,則D(0,0,0),B(2,4,0),A(2,0,0),C(0,4,0),E(2,4,1),C1(0,4,3).設(shè)F(0,0,z).

  ∵AEC1F為平行四邊形,

  

  (Ⅱ)設(shè)為平面AEC1F的法向量,

  

  

  

  的夾角為a,則

  

  ∴C到平面AEC1F的距離為

  


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示的多面體是由底面為ABCD的長(zhǎng)方體被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1.
(Ⅰ)求BF的長(zhǎng);
(Ⅱ)求二面角E-FC1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示的多面體是由底面為ABCD的長(zhǎng)方體被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1.
(Ⅰ)求BF的長(zhǎng);
(Ⅱ)求點(diǎn)C到平面AEC1F的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖所示的多面體是由底面為ABCD的長(zhǎng)方體被截面AEGF所截得的,其中AB=4,BC=2,CG=3,BE=1,
(1)求:BF與平面BCGE所成角的正切值
(2)求:截面AEGF與平面ABCD所成的二面角的余弦值
(3)在線段CG上是否存在一點(diǎn)M,使得M在平面AEGF上的射影恰為△EGF的重心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的多面體是由底面為的長(zhǎng)方體被截面所截面而得到的,其中.

   (Ⅰ)求的長(zhǎng);

   (Ⅱ)求二面角E-FC1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省紅色六校高三第一次月考理科數(shù)學(xué)試卷 題型:解答題

如圖所示的多面體是由底面為的長(zhǎng)方體被截面所截面而得到的,其中.

(Ⅰ)求的長(zhǎng);

(Ⅱ)求點(diǎn)到平面的距離.

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案