【題目】如圖,B,C分別是海岸線上的兩個(gè)城市兩城市間由筆直的海濱公路相連,BC之間的距離為100km,海島A在城市B的正東方50從海島A到城市C,先乘船按北偏西θ角(其中銳角的正切值為)航行到海岸公路P處登陸,再換乘汽車到城市C已知船速為25km/h,車速為75km/h.

(1)試建立由A經(jīng)PC所用時(shí)間與的函數(shù)解析式;

(2)試確定登陸點(diǎn)P的位置,使所用時(shí)間最少,并說明理由.

【答案】(1),定義域?yàn)?/span>(2)17.68

【解析】

試題分析:(1)由輪船航行的方位角為,可得,,由直角三角形的性質(zhì)及三角函數(shù)的定義可得,,所以,則由經(jīng) 所用時(shí)間與的函數(shù)關(guān)系為,可得函數(shù)的定義域?yàn)?/span>,其中銳角的正切值為;(2)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得上遞減,在上遞增,(),所以可得時(shí)函數(shù)取得最小值,此時(shí) ≈17.68.

試題解析:(1)由題意,輪船航行的方位角為θ,所以,,則, AP所用的時(shí)間為,PC所用的時(shí)間為,所以由A經(jīng)PC所用時(shí)間與θ的函數(shù)關(guān)系為函數(shù)的定義域?yàn)?/span>,其中銳角的正切值為.

(2)由(1),,,令,解得,設(shè)θ0,使

θ0

0

減函數(shù)

極小值

增函數(shù)

所以,當(dāng)時(shí)函數(shù)f(θ)取得最小值,此時(shí)BP=≈17.68,

答:在BC上選擇距離B17.68 處為登陸點(diǎn),所用時(shí)間最少.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(其中)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為

(Ⅰ)求的解析式;

(Ⅱ)當(dāng),求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,網(wǎng)絡(luò)電商已經(jīng)悄然進(jìn)入了廣大市民的日常生活,并慢慢改變了人們的消費(fèi)方式為了更好地服務(wù)民眾,某電商在其官方APP中設(shè)置了用戶評價(jià)反饋系統(tǒng),以了解用戶對商品狀況和優(yōu)惠活動(dòng)的評價(jià)現(xiàn)從評價(jià)系統(tǒng)中隨機(jī)抽出200條較為詳細(xì)的評價(jià)信息進(jìn)行統(tǒng)計(jì),商品狀況和優(yōu)惠活動(dòng)評價(jià)的2×2列聯(lián)表如下:

對優(yōu)惠活動(dòng)好評

對優(yōu)惠活動(dòng)不滿意

合計(jì)

對商品狀況好評

100

20

120

對商品狀況不滿意

50

30

80

合計(jì)

150

50

200

I)能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為優(yōu)惠活動(dòng)好評與商品狀況好評之間有關(guān)系?

(Ⅱ)為了回饋用戶,公司通過APP向用戶隨機(jī)派送每張面額為0元,1元,2元的三種優(yōu)惠券用戶每次使用APP購物后,都可獲得一張優(yōu)惠券,且購物一次獲得1元優(yōu)惠券,2元優(yōu)惠券的概率分別是,,各次獲取優(yōu)惠券的結(jié)果相互獨(dú)立若某用戶一天使用了APP購物兩次,記該用戶當(dāng)天獲得的優(yōu)惠券面額之和為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù)

PK2k

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:K2,其中na+b+c+d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公園欲將一塊空地規(guī)劃成如圖所示的區(qū)域,其中在邊長為20米的正方形內(nèi)種植經(jīng)紅色郁金香,在正方形的剩余部分(即四個(gè)直角三角形內(nèi))種植黃色郁金香.現(xiàn)要在以為邊長的矩形內(nèi)種植綠色草坪,要求綠色草坪的面積等于黃色郁金香的面積.設(shè),米.

1)求之間的函數(shù)關(guān)系式;

2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體,已知EF,G,H分別是A1D1,B1C1,D1D,C1C的中點(diǎn)

(1)求證:EF∥平面ABHG

(2)求證:平面ABHG⊥平面CFED

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】網(wǎng)絡(luò)游戲要實(shí)現(xiàn)可持續(xù)發(fā)展,必須要發(fā)展綠色網(wǎng)游.為此,國家文化部將從內(nèi)容上對網(wǎng)游作出強(qiáng)制規(guī)定,國家信息產(chǎn)業(yè)部還將從技術(shù)上加強(qiáng)對網(wǎng)游的強(qiáng)制限制,開發(fā)限制網(wǎng)癮的疲勞系統(tǒng),現(xiàn)已開發(fā)的“游戲防沉迷系統(tǒng)”規(guī)則如下:

小時(shí)以內(nèi)(含小時(shí))為健康時(shí)間,玩家在這段時(shí)間內(nèi)獲得的累積經(jīng)驗(yàn)值(單位:)與游戲時(shí)間(小時(shí))滿足關(guān)系式:為常數(shù));

小時(shí)到小時(shí)(含小時(shí))為疲勞時(shí)間,玩家在這段時(shí)間內(nèi)獲得的經(jīng)驗(yàn)值為(即累積經(jīng)驗(yàn)值不變);

③超過小時(shí)為不健康時(shí)間,累積經(jīng)驗(yàn)值開始損失,損失的經(jīng)驗(yàn)值與不健康時(shí)間成正比例關(guān)系,比例系數(shù)為.

1)當(dāng)時(shí),寫出累積經(jīng)驗(yàn)值與游戲時(shí)間的函數(shù)關(guān)系式,并求出游戲小時(shí)的累積經(jīng)驗(yàn)值;

2)定義“玩家愉悅指數(shù)”為累積經(jīng)驗(yàn)值與游戲時(shí)間的比值,記作;若,開發(fā)部門希望在健康時(shí)間內(nèi),這款游戲的“玩家愉悅指數(shù)”不低于,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲乙兩班各隨機(jī)抽取10名同學(xué),如圖所示的莖葉圖記錄了這20名同學(xué)在2018年高考語文作文題目中的成績(單位:分).已知語文作文題目滿分為60分,“分?jǐn)?shù)分,為及格:分?jǐn)?shù)分,為高分”,若甲乙兩班的成績的平均分都是44分.

(1)求,的值;

(2)若分別從甲乙兩班隨機(jī)各抽取1名成績?yōu)楦叻值膶W(xué)生,求抽到的學(xué)生中,甲班學(xué)生成績高于乙班學(xué)生成績的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,對于的一個(gè)子集,若存在不大于的正整數(shù),使得對中的任意一對元素、,都有,則稱具有性質(zhì).

1)當(dāng)時(shí),試判斷集合是否具有性質(zhì)?并說明理由;

2)當(dāng)時(shí),若集合具有性質(zhì).

①那么集合是否一定具有性質(zhì)?并說明理由;

②求集合中元素個(gè)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)在區(qū)間上存在兩個(gè)不同零點(diǎn)求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案