在△ABC中,已知,求證:B、A、C成等差數(shù)列.
【答案】分析:先把已知條件等號(hào)左邊的分子分母利用同角三角函數(shù)間的基本關(guān)系切化弦后,分子分母都乘以cosAcosB后,利用兩角和與差的正弦函數(shù)公式化簡(jiǎn),右邊利用正弦定理化簡(jiǎn)后,根據(jù)三角形的內(nèi)角和定理及誘導(dǎo)公式,得到2cosA=1,然后在等號(hào)兩邊都乘以sinA后,利用二倍角的正弦函數(shù)公式及誘導(dǎo)公式化簡(jiǎn)后,即可得到2A=B+C,得到三角成等差數(shù)列,得證.
解答:解:=====,
因?yàn)閟in(A+B)=sin(π-C)=sinC,得到sin(A-B)=sinC-sinB,
即sinB=sin(A+B)-sin(A-B)=2cosAsinB,
得到2cosA=1,即2sinAcosA=sinA,即sin2A=sinA=sin(B+C),
由2A+B+C≠π,得到2A=B+C,
所以B,A,C成等差數(shù)列.
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用同角三角函數(shù)間的基本關(guān)系、兩角和與差的正弦函數(shù)公式以及誘導(dǎo)公式化簡(jiǎn)求值,是一道證明題.學(xué)生做題時(shí)始終注意三角形的內(nèi)角和為180°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知A=30°,B=120°,b=12,求a,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知b=
2
,c=1,B=45°,求a,A,C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知高AN和BM所在直線方程分別為x+5y-3=0和x+y-1=0,邊AB所在直線方程x+3y-1=0,求直線BC,CA及AB邊上的高所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知lgsinA-lgcosB-lgsinC=lg2,則三角形一定是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知b=1,c=3,A=120°,則a=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案