20.設(shè)向量$\overrightarrow{a}$=(cosα,-$\frac{\sqrt{2}}{2}$)的模為$\frac{\sqrt{3}}{2}$,則cos2α=(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{1}{4}$

分析 由向量求模公式可以得到cosα的值,再利用二倍角公式即可求得答案.

解答 解:∵向量$\overrightarrow{a}$=(cosα,-$\frac{\sqrt{2}}{2}$)的模為$\frac{\sqrt{3}}{2}$,
∴cosα=±$\frac{1}{2}$
∴cos2α=2cos2α-1=-$\frac{1}{2}$
故選:C.

點(diǎn)評(píng) 本題考查向量求模公式以及三角函數(shù)二倍角公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=2sin(2x+φ)+1(|φ|<$\frac{π}{2}$),若f(x)<1,對(duì)x∈(-$\frac{π}{3}$,-$\frac{π}{12}$)恒成立,則f($\frac{π}{4}$)的最小值是(  )
A.1B.2C.-1D.-$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知一個(gè)圓錐內(nèi)接于球O(圓錐的底面圓周及頂點(diǎn)均在球面上),若球的表面積為100π,圓錐的高是底面半徑的2倍,則圓錐的高為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知拋物線y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為l,過點(diǎn)F的直線交拋物線于A,B兩點(diǎn),過點(diǎn)A作準(zhǔn)線l的垂線,垂足為E,當(dāng)A點(diǎn)的坐標(biāo)為(3,y1)時(shí),△AEF為正三角形,則此時(shí)△AEF的面積為(  )
A.$\frac{2\sqrt{3}}{3}$B.$\frac{4\sqrt{3}}{3}$C.2$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=2$\sqrt{3}$sinxsin($\frac{π}{2}$-x)+2cos2x+a的最大值為3.
(Ⅰ)求f(x)的對(duì)稱軸方程和a的值;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=sin(x+θ)+mcos(x+2θ),其中m∈R,θ∈(-$\frac{π}{2}$,$\frac{π}{2}$).若f($\frac{π}{2}$)=0,f(π)=1
(1)求m,θ的值;
(2)在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,f(A)=-$\frac{1}{2}$,a=1,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,過拋物線x2=4y的對(duì)稱軸上一點(diǎn)P(0,m)(m>0)作直線l1,l1與拋物線交于A,B兩點(diǎn).
(Ⅰ)若$\overrightarrow{OA}•\overrightarrow{OB}$<0(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)m的取值范圍;
(Ⅱ)過點(diǎn)P且與l1垂直的直線l2與拋物線交于C,D兩點(diǎn),設(shè)AB,CD的中點(diǎn)分別為M,N,求證:直線MN必過定點(diǎn),并求出該定點(diǎn)坐標(biāo)(用m表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)一切正整數(shù)n都有Sn=n2+$\frac{1}{2}$an
(1)證明:an+1+an=4n+2;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)f(n)=($1-\frac{1}{{a}_{1}}$)($1-\frac{1}{{a}_{2}}$)…($1-\frac{1}{{a}_{n}}$)<$\frac{2{a}^{2}-3}{2a\sqrt{2n+1}}$對(duì)于一切正整數(shù)n成立?若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=ln(x2-2)+$\sqrt{1-x}$的定義域?yàn)椋?∞,-$\sqrt{2}$).

查看答案和解析>>

同步練習(xí)冊(cè)答案