設(shè)向量
a
=(5
3
cosx,cosx),
b
=(sinx,2cosx),函數(shù)f(x)=
a
b
+|
b
|2+
3
2

(1)求x∈[-
π
6
,
π
2
]時(shí),求函數(shù)f(x)的值域.
(2)將y=f(x)的圖象向右平移φ(φ>0)個(gè)單位后,再將得到的圖象向下平移5個(gè)單位,得到函數(shù)y=g(x)的圖象,若函數(shù)y=g(x)是偶函數(shù),求φ的最小值.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)先對函數(shù)解析式化簡,利用正弦函數(shù)的性質(zhì)和x的范圍確定f(x)的范圍.
(2)通過圖象平移的法則求得g(x),進(jìn)而根據(jù)函數(shù)為偶函數(shù)判斷出φ.
解答: 解:(1)f(x)=5
3
cosxsinx+2cos2x+4cos2x+sin2x+
3
2
=
5
3
2
sin2x+
5+5cos2x
2
+
5
2
=5sin(2x+
π
6
)+5,
∵x∈[-
π
6
π
2
],
∴2x+
π
6
∈[-
1
2
,1],
∴f(x)∈[
5
2
,10].
(2)f(x)=5sin(2x+
π
6
)+5,
∴g(x)=5sin[2(x-φ)+
π
6
]+5-5=5sin(2x-2φ+
π
6
),
∵g(x)為偶函數(shù),
∴-2φ+
π
6
=kπ+
π
2

∵φ>0,
∴當(dāng)k=-1時(shí),φ有最小值
π
3
點(diǎn)評:本題主要考查了三角函數(shù)恒等變換的應(yīng)用,三角函數(shù)圖象的平移,三角函數(shù)圖象用性質(zhì).考查了學(xué)生對三角函數(shù)基礎(chǔ)知識的綜合運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x、y滿足約束條件
2x-y+1≥0
2x+y≥0
x≤1
,則z=x+3y的最小值為( 。
A、7
B、
5
3
C、-5
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知a1=1,
2Sn
n
=an+1-
1
3
n2-n-
2
3
,n∈N*
(1)求a2的值;
(2)求證:數(shù)列{
an
n
}是等差數(shù)列;
(3)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=a•2n-1
(1)若a=3,求a1和a4的值;       
(2)若{an}是等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了整頓道路交通秩序,某地考慮將對行人闖紅燈進(jìn)行處罰.為了更好地了解市民的態(tài)度,在普通行人中隨機(jī)選取了200人進(jìn)行調(diào)查,得到如表數(shù)據(jù):
處罰金額x(元)05101520
會闖紅燈的人數(shù)y8050402010
(Ⅰ)若用表中數(shù)據(jù)所得頻率代替概率,則處罰10元時(shí)與處罰20元時(shí),行人會闖紅燈的概率的差是多少?
(Ⅱ)若從這5種處罰金額中隨機(jī)抽取2種不同的金額進(jìn)行處罰,在兩個(gè)路口進(jìn)行試驗(yàn).
①求這兩種金額之和不低于20元的概率;
②若用X表示這兩種金額之和,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直角坐標(biāo)系xOy和極坐標(biāo)系Ox的原點(diǎn)與極點(diǎn)重合,x軸正半軸與極軸重合,單位長度相同,圓C的參數(shù)方程為
x=2cosθ
y=2sinθ+1
(θ為參數(shù)),直線l的極坐標(biāo)方程為θ=
π
4
(ρ∈R).
(1)求圓C及直線l的普通方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求
CA
CB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在斜三棱柱ABC-A1B1C1中,四邊形ABB1A1是菱形,四邊形CBB1C1是矩形,AB⊥BC,CB=3,AB=4,∠A1AB=60°,D、E分別是AC、A1B的中點(diǎn).
(Ⅰ)求證:平面CA1B⊥平面ABB1A1
(Ⅱ)求證:DE∥平面CBB1C1;
(Ⅲ)求四面體A1ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x+ax2+blnx,曲線y=f(x)過點(diǎn)P(1,0)且在點(diǎn)P處的切線斜率為2,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,∠CAD=90°,PA⊥平面ABCD,PA=BC=1,AB=
2
,F(xiàn)是BC的中點(diǎn).
(1)求證:DA⊥平面PAC;
(2)若以A為坐標(biāo)原點(diǎn),射線AC、AD、AP分別是軸、軸、軸的正半軸,建立空間直角坐標(biāo)系,已經(jīng)計(jì)算得
=(1,1,1)是平面PCD的法向量,求平面PAF與平面PCD所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案