(本題滿分16分)已知,
且.
(Ⅰ)當(dāng)時,求在處的切線方程;
(Ⅱ)當(dāng)時,設(shè)所對應(yīng)的自變量取值區(qū)間的長度為(閉區(qū)間的長度定義為),試求的最大值;
(Ⅲ)是否存在這樣的,使得當(dāng)時,?若存在,求出的取值范圍;若不存在,請說明理由.
解: (Ⅰ)當(dāng)時,.
因為當(dāng)時,,,
且,
所以當(dāng)時,,且………………………………(3分)
由于,所以,又,
故所求切線方程為,
即………………………………………………………………(5分)
(Ⅱ) 因為,所以,則
當(dāng)時,因為,,
所以由,解得,
從而當(dāng)時, …………………………………………(6分)
當(dāng)時,因為,,
所以由,解得,
從而當(dāng)時, ………………………………………(7分)
③當(dāng)時,因為,
從而 一定不成立……………………………………………………………(8分)
綜上得,當(dāng)且僅當(dāng)時,,
故 ………………………………………(9分)
從而當(dāng)時,取得最大值為………………………………………………(10分)
(Ⅲ)“當(dāng)時,”等價于“對恒成立”,
即“(*)對恒成立” ……………………………(11分)
當(dāng)時,,則當(dāng)時,,則(*)可化為
,即,而當(dāng)時,,
所以,從而適合題意……………………………………………………………(12分)
當(dāng)時,.
當(dāng)時,(*)可化為,即,而,
所以,此時要求………………………………………………………(13分)
當(dāng)時,(*)可化為,
所以,此時只要求……………………………………………………(14分)
(3)當(dāng)時,(*)可化為,即,而,
所以,此時要求………………………………………………………(15分)
由⑴⑵⑶,得符合題意要求.
綜合①②知,滿足題意的存在,且的取值范圍是……………………………(16分)
科目:高中數(shù)學(xué) 來源:2010-2011年江蘇省淮安市楚州中學(xué)高二上學(xué)期期末考試數(shù)學(xué)試卷 題型:解答題
(本題滿分16分)
已知函數(shù),且對任意,有.
(1)求;
(2)已知在區(qū)間(0,1)上為單調(diào)函數(shù),求實數(shù)的取值范圍.
(3)討論函數(shù)的零點個數(shù)?(提示:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三10月階段性測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分16分)已知函數(shù)為實常數(shù)).
(I)當(dāng)時,求函數(shù)在上的最小值;
(Ⅱ)若方程在區(qū)間上有解,求實數(shù)的取值范圍;
(Ⅲ)證明:
(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江蘇省高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分16分) 已知橢圓:的離心率為,分別為橢圓的左、右焦點,若橢圓的焦距為2.
⑴求橢圓的方程;
⑵設(shè)為橢圓上任意一點,以為圓心,為半徑作圓,當(dāng)圓與橢圓的右準(zhǔn)線有公共點時,求△面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江蘇省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分16分)已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時,。
(Ⅰ)求及的值;
(Ⅱ)求函數(shù)在上的解析式;
(Ⅲ)若關(guān)于的方程有四個不同的實數(shù)解,求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省2009-2010學(xué)年高二第二學(xué)期期末考試 題型:解答題
本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4 ;求四邊形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com