一條線段AB的兩端點(diǎn)A,B和平面α的距離分別是30cm和50cm,P為線段AB上一點(diǎn),且PA:PB=3:7,則P到平面α的距離為( 。
A.36cmB.6cmC.36cm或6cmD.以上都不對
若A,B在平面α的同側(cè)
∵PA:PB=3:7,
A,B和平面α的距離分別是30cm和50cm,
∴P點(diǎn)到平面α的距離為
7
10
×30+
3
10
×50
=36cm
若A,B在平面α的異側(cè)
∵PA:PB=3:7,
A,B和平面α的距離分別是30cm和50cm,
∴P點(diǎn)到平面α的距離為
7
10
×30-
3
10
×50
=6cm
故P到平面α的距離為36cm或6cm
故選C
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知三棱錐P-ABC中,PA、PB、PC與底面ABC成相等的角,∠CAB=90°,AC=AB,DBC的中點(diǎn),E點(diǎn)在PB上,PC∥截面EAD.

(1)求證:平面PBC⊥底面ABC.
(2)若AB=PB,求AE與底面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對于平面和共面的直線m、n,下列命題中真命題是 (        )
A.若mmn,則nB.若m,n,則mn
C.若m,n,則mnD.若m、n所成的角相等,則nm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

考察正方體6個面的中心,甲從這6個點(diǎn)中任意選兩個點(diǎn)連成直線,乙也從這6個點(diǎn)中任意選兩個點(diǎn)連成直線,則所得的兩條直線相互平行但不重合的概率等于(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方體ABCD-A1B1C1D1中,點(diǎn)E在棱CD上.
(1)求證:EB1⊥AD1;
(2)若E是CD中點(diǎn),求EB1與平面AD1E所成的角;
(3)設(shè)M在BB1上,且
BM
MB1
=
2
3
,是否存在點(diǎn)E,使平面AD1E⊥平面AME,若存在,指出點(diǎn)E的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA⊥平面ABCD,四邊形ABCD是正方形,PA=AD=2,M,N分別是AB,PC的中點(diǎn).
(1)求二面角P-CD-B的大。
(2)求證:平面MND⊥平面PCD;
(3)求點(diǎn)P到平面MND的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐S-ABC中,底面ABC是邊長為4的正三角形,側(cè)面SAC⊥底面ABC,SA=SC=2
3
,M,N分別為AB,SB的中點(diǎn).
(Ⅰ)求證:AC⊥SB;
(Ⅱ)求二面角N-CM-B的大小的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在長方體ABCD-A1B1C1D1中,AB=AD=2,AA1=a,E,F(xiàn)分別為AD,CD的中點(diǎn).
(1)若AC1⊥D1F,求a的值;
(2)若a=2,求二面角E-FD1-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正方體中,若的中點(diǎn),則直線垂直于(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案