【題目】在三棱錐DABC中,ADDC,ACCB,AB=2AD=2DC=2,且平面ABD平面BCD,E為AC的中點.
(I)證明:ADBC;
(II)求直線 DE 與平面ABD所成的角的正弦值.
【答案】(I)見證明;(II)
【解析】
(I)先作,由面面垂直的性質(zhì)定理可證線面垂直,再結(jié)合條件證得面,得到結(jié)論.
(II)法一:根據(jù)(1)作出過E且與CH平行的線段,可得到線面角,再在直角三角形中求解即可. 法二:以D為坐標原點建立空間直角坐標系,求出和平面ABD的法向量,則|cos|即為所求.
(I)過作,(其中與都不重合,否則,若與重合,則與矛盾,
若與重合,則,與矛盾)
面面
面
,又
面
(II)法一:作,則,
由(1)知:面
即與面所成角,且
法二:由(I)知平面,,以為原點,分別以射線為軸,軸的正半軸,建立空間直角坐標系
由題意知:
∴,
∵平面的法向量為,
設(shè)與面所成角為
∴
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在中國象棋規(guī)則下,點A處的“兵”可通過某條路徑到達點B(兵在過河前每步只能走到其前方相鄰的交叉點處,過河之后每步則可走到前方、左方、右方相鄰的交叉點處,但不能后退,“河”是指圖棋盤中第5、6條橫線之間的部分).在兵的行進過程中,若棋盤的每個交叉點均不被兵重復走到,則稱此路徑為“無重復路徑”.那么,不同的無重復路徑的條數(shù)為__________。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)
(1)若是函數(shù)的一個極值點,求函數(shù)的單調(diào)區(qū)間;
(2)當時,對于任意的(為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,E,F分別為AC,BC的中點.
(1)求證:EF∥平面PAB;
(2)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°,求證:平面PEF⊥平面PBC.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線的左焦點為,點A的坐標為(0,1),點P為雙曲線右支上的動點,且△APF1周長的最小值為6,則雙曲線的離心率為( 。
A.B.C.2D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù).
(1)若函數(shù)在區(qū)間上存在零點,求實數(shù)p的取值范圍;
(2)問是否存在常數(shù),使得當時,的值域為區(qū)間D,且D的長度為.
(注:區(qū)間 的長度為).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點是橢圓上任一點,點到直線:的距離為,到點的距離為,且,若直線與橢圓交于不同兩點、(、都在軸上方),且.
(1)求橢圓的標準方程;
(2)當為橢圓與軸正半軸的交點時,求直線的方程;
(3)對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出定點的坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com