已知a為實數(shù),。
⑴求導(dǎo)數(shù);
⑵若,求在[-2,2] 上的最大值和最小值;
⑶若在(-∞,-2)和(2,+∞)上都是遞增的,求a的取值范圍。
⑴
⑵f(x)在[-2,2]上的最大值為最小值為
⑶a的取值范圍是[-2,2].
【解析】
試題分析:⑴由原式得∴
⑵由 得,此時有.
由得或x="-1" , 又
所以f(x)在[-2,2]上的最大值為最小值為
⑶解法一:的圖象為開口向上且過點(0,-4)的拋物線,由條件得
即 ∴-2≤a≤2.
所以a的取值范圍為[-2,2].
解法二:令即 由求根公式得:
所以在和上非負(fù).
由題意可知,當(dāng)x≤-2或x≥2時, ≥0,
從而x1≥-2, x2≤2,
即 解不等式組得-2≤a≤2.
∴a的取值范圍是[-2,2].
考點:導(dǎo)數(shù)計算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值。
點評:中檔題,此類問題較為典型,是導(dǎo)數(shù)應(yīng)用的基本問題。在某區(qū)間,導(dǎo)函數(shù)值非負(fù),函數(shù)為增函數(shù),導(dǎo)函數(shù)值非正,函數(shù)為減函數(shù)。求最值應(yīng)遵循“求導(dǎo)數(shù),求駐點,計算極值及端點函數(shù)值,比較確定最值”。
科目:高中數(shù)學(xué) 來源: 題型:
x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3(a-1) | sinθ+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com