【題目】袋子中有四個小球,分別寫有“美麗中國”四個字,有放回地從中任取一個小球,直到“中”“國”兩個字都取到就停止,用隨機模擬的方法估計恰好在第三次停止的概率.利用電腦隨機產生03之間取整數(shù)值的隨機數(shù),分別用0,12,3代表“中國美麗”這四個字,以每三個隨機數(shù)為一組,表示取球三次的結果,經(jīng)隨機模擬產生了以下18組隨機數(shù):

232 321 230 023 123 021 132 220 001

231 130 133 231 031 320 122 103 233

由此可以估計,恰好第三次就停止的概率為( )

A.B.C.D.

【答案】C

【解析】

根據(jù)隨機數(shù)的定義,結合古典概型的概率公式進行計算即可.

解:由題意可知,滿足條件的隨機數(shù)組中,前兩次抽取的數(shù)中含01不能同時出現(xiàn),出現(xiàn)0就不能出現(xiàn)1,反之亦然,第三次必須出現(xiàn)前兩個數(shù)字中沒有出現(xiàn)的10,即符合條件的數(shù)組只有4組:021001,130,031,故所求概率為.

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),若存在互不相等的個實數(shù),使得,則的取值范圍為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某二手車直賣網(wǎng)站對其所經(jīng)營的一款品牌汽車的使用年數(shù)x與銷售價格y(單位:萬元,輛)進行了記錄整理,得到如下數(shù)據(jù):

(I)畫散點圖可以看出,zx有很強的線性相關關系,請求出zx的線性回歸方程(回歸系數(shù)精確到0.01);

(II)y關于x的回歸方程,并預測某輛該款汽車當使用年數(shù)為10年時售價約為多少.

參考公式:

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合M={x|x<-3,或x>5},P={x|(xa)·(x-8)≤0}.

(1)求MP={x|5<x≤8}的充要條件;

(2)求實數(shù)a的一個值,使它成為MP={x|5<x≤8}的一個充分但不必要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)求函數(shù)的極值;

(2)若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某超市為了解顧客的購物量及結算時間等信息,安排一名員工隨機收集了在該超市購物的100名顧客的相關數(shù)據(jù),如下表所示:

已知這100位顧客中一次性購物超過8件的顧客占55%.

一次性購物

1至4件

5至8件

9至12件

13至16件

17件及以上

顧客數(shù)(人)

30

25

10

結算時間(分/人)

1

1.5

2

2.5

3

(1)求,的值;

(2)求一位顧客一次購物的結算時間超過2分鐘的概率(頻率代替概率).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產某種產品,為了提高生產效益,通過引進先進的生產技術和管理方式進行改革,并對改革后該產品的產量x(萬件)與原材料消耗量y(噸)及100件產品中合格品與不合格品數(shù)量作了記錄,以便和改革前作對照分析,以下是記錄的數(shù)據(jù):

表一:改革后產品的產量和相應的原材料消耗量

x

3

4

5

6

y

2.5

3

4

4.5

表二:改革前后定期抽查產品的合格數(shù)與不合格數(shù)

合格品的數(shù)量

不合格品的數(shù)量

合計

改革前

90

10

100

改革后

85

15

100

合計

175

25

200

(1)請根據(jù)表一提供數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程.

(2)已知改革前生產7萬件產品需要6.5噸原材料,根據(jù)回歸方程預測生產7萬件產品能夠節(jié)省多少原材料?

(3)請根據(jù)表二提供的數(shù)據(jù),判斷是否有90%的把握認為“改革前后生產的產品的合格率有差異”?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知正三棱柱的高為3,底面邊長為,點分別為棱的中點.

1)求證:直線平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知fx)是定義在R上的奇函數(shù),且當x≥0時,fx)=x2,對任意的x∈[t,t+2]不等式fx+t)≥2fx)恒成立,那么實數(shù)t的取值范圍是( 。

A. [,+∞) B. [2,+∞) C. (0,] D. [0,]

查看答案和解析>>

同步練習冊答案