已知橢圓過(guò)點(diǎn),且離心率。

(Ⅰ)求橢圓方程;
(Ⅱ)若直線(xiàn)與橢圓交于不同的兩點(diǎn)、,且線(xiàn)段的垂直平分線(xiàn)過(guò)定點(diǎn),求的取值范圍。

(Ⅰ)橢圓方程為
(Ⅱ)

解析試題分析:(Ⅰ)設(shè)出橢圓的方程,結(jié)合離心率公式和點(diǎn)的坐標(biāo)得到a,b的關(guān)系式,進(jìn)而求解得到方程。
(Ⅱ)聯(lián)立直線(xiàn)與橢圓的方程,結(jié)合韋達(dá)定理表示出根與系數(shù)的關(guān)系,結(jié)合斜率狗狗是得到m,k的表達(dá)式,進(jìn)而結(jié)合判別式得到范圍。
解:(Ⅰ)離心率,,即(1);
又橢圓過(guò)點(diǎn),則,(1)式代入上式,解得,,
橢圓方程為。-------4分
(Ⅱ)設(shè),弦MN的中點(diǎn)A
得:,------------6分
直線(xiàn)與橢圓交于不同的兩點(diǎn),
,即……(1)--------8分
由韋達(dá)定理得:,
,-------------10分
直線(xiàn)AG的斜率為:,
由直線(xiàn)AG和直線(xiàn)MN垂直可得:,即,----12分
代入(1)式,可得,即,則---14分
考點(diǎn):本題主要考查了直線(xiàn)與橢圓的位置關(guān)系的運(yùn)用。
點(diǎn)評(píng):解決該試題的關(guān)鍵是能夠利用橢圓的幾何性質(zhì)準(zhǔn)確表述出a,b,c的關(guān)系式及而求解得到橢圓方程,同時(shí)聯(lián)立方程組,結(jié)合韋達(dá)定理是我們解析幾何的常用的解題方法。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分12分)已知橢圓上的任意一點(diǎn)到它的兩個(gè)焦點(diǎn)的距離之和為,且其焦距為
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線(xiàn)與橢圓交于不同的兩點(diǎn)A,B.問(wèn)是否存在以A,B為直徑
的圓 過(guò)橢圓的右焦點(diǎn).若存在,求出的值;不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)(12分)經(jīng)過(guò)點(diǎn)作直線(xiàn)交雙曲線(xiàn)、兩點(diǎn),且 為 中點(diǎn).
(1)求直線(xiàn)的方程 ;(2)求線(xiàn)段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C的焦點(diǎn)F1(-,0)和F2,0),長(zhǎng)軸長(zhǎng)6。
(1)求橢圓C的標(biāo)準(zhǔn)方程。
(2)設(shè)直線(xiàn)交橢圓C于A、B兩點(diǎn),求線(xiàn)段AB的中點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(12分)如圖,已知橢圓(a>b>0)的離心率,過(guò)點(diǎn) 和的直線(xiàn)與原點(diǎn)的距離為

(1)求橢圓的方程;
(2)已知定點(diǎn),若直線(xiàn)與橢圓交于、兩   點(diǎn).問(wèn):是否存在的值,
使以為直徑的圓過(guò)點(diǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿(mǎn)分14分)
設(shè)直線(xiàn)與拋物線(xiàn)交于不同兩點(diǎn)A、B,F(xiàn)為拋物線(xiàn)的焦點(diǎn)。
(1)求的重心G的軌跡方程;
(2)如果的外接圓的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿(mǎn)分14分)(文科)已知曲線(xiàn)的離心率,直線(xiàn)過(guò)、兩點(diǎn),原點(diǎn)的距離是.
(Ⅰ)求雙曲線(xiàn)的方程;
(Ⅱ)過(guò)點(diǎn)作直線(xiàn)交雙曲線(xiàn)于兩點(diǎn),若,求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)雙曲線(xiàn)C:的左、右頂點(diǎn)分別為A1、A2,垂直于x軸的直線(xiàn)m與雙曲線(xiàn)C交于不同的兩點(diǎn)
(1)若直線(xiàn)m與x軸正半軸的交點(diǎn)為T(mén),且,求點(diǎn)T的坐標(biāo);
(2)求直線(xiàn)A1P與直線(xiàn)A2Q的交點(diǎn)M的軌跡E的方程;
(3)過(guò)點(diǎn)F(1,0)作直線(xiàn)l與(Ⅱ)中的軌跡E交于不同的兩點(diǎn)A、B,設(shè),若(T為(1)中的點(diǎn))的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓,拋物線(xiàn)的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為坐標(biāo)原點(diǎn),從每條曲線(xiàn)上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表中:











 
(1)求的標(biāo)準(zhǔn)方程;
(2)請(qǐng)問(wèn)是否存在直線(xiàn)同時(shí)滿(mǎn)足條件:(ⅰ)過(guò)的焦點(diǎn);(ⅱ)與交于不同兩點(diǎn)、,且滿(mǎn)足.若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案