【題目】已知函數(shù)

(Ⅰ)若,求證:函數(shù)在(1+∞)上是增函數(shù);

(Ⅱ)求函數(shù)[1,e]上的最小值及相應(yīng)的.

【答案】(Ⅰ)函數(shù)f(x)在(1,+∞)上是增函數(shù);(Ⅱ)見(jiàn)解析.

【解析】試題分析:)代入,求導(dǎo),通過(guò)導(dǎo)數(shù)恒為正值進(jìn)行證明;()求導(dǎo),通過(guò)討論參數(shù)的取值,研究函數(shù)的極值點(diǎn)與所給區(qū)間的關(guān)系,進(jìn)而研究函數(shù)在所給區(qū)間上的單調(diào)性和極值、最值進(jìn)行求解.

試題解析:(Ⅰ)當(dāng)a=﹣2時(shí),f(x)=x2﹣2lnx,當(dāng)x∈(1,+∞),,故函數(shù)f(x)在(1,+∞)上是增函數(shù).

(Ⅱ),當(dāng)x∈[1,e],2x2+a∈[a+2,a+2e2].

a≥﹣2,f'(x)在[1,e]上非負(fù)(僅當(dāng)a=﹣2,x=1時(shí),f'(x)=0),

故函數(shù)f(x)在[1,e]上是增函數(shù),此時(shí)[f(x)]min=f(1)=1.

若﹣2e2<a<﹣2,當(dāng)時(shí),f'(x)=0;當(dāng)時(shí),f'(x)<0,

此時(shí)f(x)是減函數(shù);當(dāng)時(shí),f'(x)>0,此時(shí)f(x)是增函數(shù).

[f(x)]min==

a≤﹣2e2,f'(x)在[1,e]上非正(僅當(dāng)a=﹣2e2,x=e時(shí),f'(x)=0),

故函數(shù)f(x)在[1,e]上是減函數(shù),此時(shí)[f(x)]min=f(e)=a+e2

綜上可知,當(dāng)a≥﹣2時(shí),f(x)的最小值為1,相應(yīng)的x值為1;

當(dāng)﹣2e2<a<﹣2時(shí),f(x)的最小值為,相應(yīng)的x值為;

當(dāng)a≤﹣2e2時(shí),f(x)的最小值為a+e2,相應(yīng)的x值為e

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知△ABC中,∠ACB=90°,SA⊥平面ABCADSC,求證:AD⊥平面SBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某氣象儀器研究所按以下方案測(cè)試一種彈射型氣象觀測(cè)儀器的垂直彈射高度:A、B、C三地位于同一水平面上,在C處進(jìn)行該儀器的垂直彈射,觀測(cè)點(diǎn)A、B兩地相距100米,∠BAC60°,在A地聽(tīng)到彈射聲音的時(shí)間比在B地晚

秒. A地測(cè)得該儀器彈至最高點(diǎn)H時(shí)的仰角為30°.

(1)求A、C兩地的距離;

(2)求該儀器的垂直彈射高度CH.(聲音的傳播速度為340米/秒)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,側(cè)棱底面,底面為長(zhǎng)方形,且的中點(diǎn),作于點(diǎn).

(1)證明:平面;

(2)若三棱錐的體積為,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐V-ABC中,平面VAB平面ABC, VAB為等邊三角形,ACBCAC=BC=O,M分別為AB,VA的中點(diǎn)。

(I)求證:VB//平面MOC;

II)求證:平面MOC平面VAB;

(III)求三棱錐V-ABC的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分13分)

已知函數(shù),(其中),其部分圖像如圖所示.

I)求的解析式;

II)求函數(shù)在區(qū)間上的最大值及相應(yīng)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若正數(shù)x,y滿足15x﹣y=22,則x3+y3﹣x2﹣y2的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】)直線過(guò)點(diǎn)(2,3),且當(dāng)傾斜角是直線的傾斜角的二倍時(shí),求直線方程.

)當(dāng)與軸正半軸交于點(diǎn)、軸正半軸交于點(diǎn),且的面積最小時(shí),求直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若直線是異面直線,在平面內(nèi),在平面內(nèi),是平面與平面的交線,則下列結(jié)論正確的是( )

A. 至少與,中的一條相交 B. ,都不相交

C. ,都相交 D. 至多與,中的一條相交

查看答案和解析>>

同步練習(xí)冊(cè)答案