【題目】設(shè)函數(shù).

1)討論的單調(diào)性;

2)若有兩個(gè)極值點(diǎn),,求證:.

【答案】1)當(dāng)時(shí),上單調(diào)遞減,在上單調(diào)遞增;

當(dāng)時(shí),上單調(diào)遞減;

當(dāng)時(shí),,上單調(diào)遞減,在上單調(diào)遞增.

2)見解析

【解析】

1)求出,令,,討論的取值,判斷的符號(hào),從而可求出的單調(diào)性.

2)由(1)得時(shí),有兩個(gè)極值點(diǎn),設(shè),則有,整理,令,,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可得,進(jìn)而可得證

解:(1,

,

①當(dāng)時(shí),上單調(diào)遞減,

②當(dāng)時(shí),,由,,

當(dāng)時(shí),當(dāng)時(shí),

上單調(diào)遞減,在上單調(diào)遞增,

③當(dāng)時(shí),,,∴上單調(diào)遞減,

④當(dāng)時(shí),,由,

當(dāng)時(shí),,

當(dāng)時(shí),,

上單調(diào)遞減,

上單調(diào)遞增,

綜上所述,

當(dāng)時(shí),上單調(diào)遞減,

上單調(diào)遞增;

當(dāng)時(shí),上單調(diào)遞減;

當(dāng)時(shí),,上單調(diào)遞減,

上單調(diào)遞增.

2)由(1)得時(shí),有兩個(gè)極值點(diǎn),設(shè),

則有,

,

,,

,則

,∴,,,

∴當(dāng)時(shí),,∴在區(qū)間單調(diào)遞增,

,∴在區(qū)間單調(diào)遞減,

,

綜上,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電視臺(tái)舉行文藝比賽,并通過(guò)網(wǎng)絡(luò)對(duì)比賽進(jìn)行直播.比賽現(xiàn)場(chǎng)有5名專家評(píng)委給每位參賽選手評(píng)分,場(chǎng)外觀眾可以通過(guò)網(wǎng)絡(luò)給每位參賽選手評(píng)分.每位選手的最終得分由專家評(píng)分和觀眾評(píng)分確定.某選手參與比賽后,現(xiàn)場(chǎng)專家評(píng)分情況如表;場(chǎng)外有數(shù)萬(wàn)名觀眾參與評(píng)分,將評(píng)分按照[7,8),[8,9),[9,10]分組,繪成頻率分布直方圖如圖:

專家

A

B

C

D

E

評(píng)分

9.6

9.5

9.6

8.9

9.7

(1)求a的值,并用頻率估計(jì)概率,估計(jì)某場(chǎng)外觀眾評(píng)分不小于9的概率;

(2)從5名專家中隨機(jī)選取3人,X表示評(píng)分不小于9分的人數(shù);從場(chǎng)外觀眾中隨機(jī)選取3人,用頻率估計(jì)概率,Y表示評(píng)分不小于9分的人數(shù);試求E(X)與E(Y)的值;

(3)考慮以下兩種方案來(lái)確定該選手的最終得分:方案一:用所有專家與觀眾的評(píng)分的平均數(shù)作為該選手的最終得分,方案二:分別計(jì)算專家評(píng)分的平均數(shù)和觀眾評(píng)分的平均數(shù),用作為該選手最終得分.請(qǐng)直接寫出的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線,以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

2)設(shè)點(diǎn)在曲線上,直線交曲線于點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)在拋物線 上,直線 與拋物線交于, 兩點(diǎn),且直線 的斜率之和為-1.

(1)求的值;

(2)若,設(shè)直線軸交于點(diǎn),延長(zhǎng)與拋物線交于點(diǎn),拋物線在點(diǎn)處的切線為,記直線, 軸圍成的三角形面積為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于、兩點(diǎn).

1)求實(shí)數(shù)的取值范圍;

2)若,點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過(guò)的包裹收費(fèi)10元;重量超過(guò)的包裹,除收費(fèi)10元之外,超過(guò)的部分,每超出(不足,按計(jì)算)需要再收費(fèi)5.該公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表).

1)求這60天每天包裹數(shù)量的平均值和中位數(shù);

2)該公司從收取的每件快遞的費(fèi)用中抽取5元作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的作為其他費(fèi)用.已知公司前臺(tái)有工作人員3人,每人每天工資100元,以樣本估計(jì)總體,試估計(jì)該公司每天的利潤(rùn)有多少元?

3)小明打算將四件禮物隨機(jī)分成兩個(gè)包裹寄出,且每個(gè)包裹重量都不超過(guò),求他支付的快遞費(fèi)為45元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,.已知,分別是的中點(diǎn).將沿折起,使的位置且二面角的大小是.連接,,如圖:

(Ⅰ)求證:平面平面;

(Ⅱ)求平面與平面所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:

甲說(shuō):作品獲得一等獎(jiǎng)”; 乙說(shuō):作品獲得一等獎(jiǎng)”;

丙說(shuō):兩件作品未獲得一等獎(jiǎng)”; 丁說(shuō):作品獲得一等獎(jiǎng)”.

評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過(guò)許多很有創(chuàng)意的求法,如著名的蒲豐實(shí)驗(yàn)和查理斯實(shí)驗(yàn).受其啟發(fā),我們也可以通過(guò)設(shè)計(jì)下面的實(shí)驗(yàn)來(lái)估計(jì)的值:先請(qǐng)名同學(xué),每人隨機(jī)寫下一個(gè)都小于的正實(shí)數(shù)對(duì),再統(tǒng)計(jì)兩數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對(duì)的個(gè)數(shù);最后再根據(jù)統(tǒng)計(jì)數(shù)m來(lái)估計(jì)的值.假如統(tǒng)計(jì)結(jié)果是那么可以估計(jì)______.

查看答案和解析>>

同步練習(xí)冊(cè)答案