分析 根據(jù)常見函數(shù)的性質(zhì)分別判斷函數(shù)的單調(diào)性即可.
解答 解:(1)y=$\frac{1}{{\sqrt{x}}}$在(0,+∞)遞減,符合題意;
(2)y=$\frac{5x+2}{x-1}$=5+$\frac{7}{x-1}$在(0,1)遞減,在(1,+∞)遞增,符合題意;
(3)y=-|2x+1|=-2x-1在(0,+∞)遞減,符合題意;
(4)y=2x2+2x-$\frac{3}{2}$,對稱軸x=-$\frac{1}{2}$,在(-$\frac{1}{2}$,+∞)遞增,不合題意,
故答案為:(1)(2)(3).
點評 本題考查了函數(shù)的單調(diào)性問題,熟練掌握常見函數(shù)的性質(zhì)是解題的關(guān)鍵,本題是一道基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | -$\frac{{\sqrt{2}}}{2}$ | C. | $\sqrt{2}$ | D. | -$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | $-\frac{3}{2}$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | t>1 | B. | t≥1 | C. | t<1 | D. | t≤1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 50米 | B. | 75米 | C. | 100米 | D. | 125米 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com