已知函數(shù)f(x)=
2
x-1

(1)求證:函數(shù)在(1,+∞)上是減函數(shù);
(2)求函數(shù)在x∈[3,5]的最大值和最小值.
考點:函數(shù)的最值及其幾何意義,函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)定義法:任取x1,x2∈(1,+∞),且x1<x2,作差得出f(x1)-f(x2),變形可判f(x1)-f(x2)的符號,可得函數(shù)的單調(diào)性.
(2)由第(1)問,函數(shù)在[3,5]上遞減,代入端點值即可解得.
解答: 解:(1)任取x1,x2∈(1,+∞),且x1<x2,
則f(x1)-f(x2)=
2
x1-1
-
2
x2-1
=
2(x2-x1)
(x1-1)(x2-1)
,
∵x1,x2∈(1,+∞),且x1<x2,
∴x2-x1>0,x1-1>0,x2-1>0,
2(x2-x1)
(x1-1)(x2-1)
>0,
即f(x1)-f(x2)>0,
∴f(x1)>f(x2),
∴函數(shù)上是減函數(shù).
(2)由第(1)問,函數(shù)在[3,5]上遞減,
當(dāng)x=3時,函數(shù)有最大值1,當(dāng)x=5時,函數(shù)有最小值
1
2
點評:本題考查函數(shù)單調(diào)性的判斷與證明,涉及函數(shù)單調(diào)性證明的定義法和式子變形的能力,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={(x,y)|x-2y=1},B={(x,y)|x+2y=3},求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x
+lnx,若方程f(x)=a有兩個不同的根x1,x2,求證:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是首項為2,公差不為零的等差數(shù)列,且a1,a5,a17成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
an
3n-1
,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求圓C1:x2+y2-2x+2y-1=0與圓C2:x2+y2+2x-2y-3=0的公共弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lnx-
a(x-1)
x
(x>0,a∈R).
(1)試求f(x)的單調(diào)區(qū)間;
(2)是否存在正實數(shù)a,使得函數(shù)y=f(x)的圖象存在唯一零點?若存在,試求出a的取值集合,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,
AB
=(x,y),
AC
=(u,v),求證:S△ABC=
1
2
|xv-yu|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)y=f(x)與y=g(x),在它們的公共定義域內(nèi),若f(x)-g(x)隨著自變量x的增大而增大,則稱函數(shù)f(x)相對于函數(shù)g(x)是“漸先函數(shù)”,下列幾組函數(shù)中:
①f(x)=x與g(x)=1;
②f(x)=2x與g(x)=log2x;
③f(x)=2x與g(x)=x2;
④f(x)=ex與g(x)=log2x
函數(shù)f(x)相對于函數(shù)g(x)是“漸先函數(shù)”的有( 。
A、①②B、③④C、①③D、①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=b•ax,(其中a,b為常數(shù)且a>0,a≠1)的圖象經(jīng)過點A(1,8),B(3,32)
(1)求f(x)的解析式;
(2)若不等式(
1
a
)x+(
1
b
)x
+1-2m≥0在x∈(-∞,1]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案