16.已知集合A={x|a-b<x<a+b},B={x<-1或x>5}
(1)若b=1,A∩B=A,求a的取值范圍;
(2)若a=1,A∩B=∅,求b的取值范圍.

分析 (1)把b=1代入A,根據(jù)A與B的交集為A,得到A為B的子集,確定出a的范圍即可;
(2)把a=1代入A,根據(jù)A與B的交集為空集,確定出b的范圍即可.

解答 解:(1)把b=1代入得:A={x|a-1<x<a+1},
∵B={x<-1或x>5},且A∩B=A,即A⊆B,
∴a+1≤-1或a-1≥5,
解得:a≤-2或a≥6;
(2)把a=1代入得:A={x|1-b<x<1+b},
∵B={x<-1或x>5},且A∩B=∅,
∴$\left\{\begin{array}{l}{1-b≥-1}\\{1+b≤5}\end{array}\right.$,
解得:b≤2.

點評 此題考查了交集及其運算,熟練掌握運算法則是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合P={x|x2≤1},集合M={a},若M∪P=P,則實數(shù)a的取值范圍是(  )
A.a≤1B.a≤-1C.a≥-1D.-1≤a≤1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知f(x)=xlnx.
(Ⅰ)求函數(shù)f(x)在定義域上的最小值;
(Ⅱ)求函數(shù)f(x)在[t,t+2](t>0)上的最小值;
(Ⅲ)證明:對一切x∈(0,+∞),都有l(wèi)nx>$\frac{1}{e^x}-\frac{2}{ex}$成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列各組對象中,能組成集合的有( 。
①平面上到原點的距離等于2的點;
②數(shù)學必修1課本中所以難題;
③2015年全國的本科畢業(yè)生;
④與無理數(shù)π無限接近的數(shù).
A.①②B.①③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)y=$\sqrt{9-3x}$+$\frac{1}{{\sqrt{x+1}}}$的定義域為( 。
A.[-1,3)B.(-1,3]C.(-1,3)D.[-1,3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若a2,a3,a4,a5成等比數(shù)列,其公比為2,則$\frac{2{a}_{2}+{a}_{3}}{2{a}_{4}+{a}_{5}}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)f(x)=-cos2x+6cos($\frac{π}{2}$+x)的最小值為( 。
A.-$\frac{11}{2}$B.$\frac{7}{2}$C.7D.-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知△ABC是斜三角形,角A,B,C所對的邊分別為a,b,c,若csinA=$\sqrt{3}$acosC,c=$\sqrt{21}$且sinC+sin(B-A)=5sin2A,則△ABC的面積為$\frac{5\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≥0\\ x-y-2≤0\\ y≤2\end{array}\right.$,則z=x+2y+1的最大值為9.

查看答案和解析>>

同步練習冊答案