【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2= ,且直線l經(jīng)過曲線C的左焦點(diǎn)F. ( I )求直線l的普通方程;
(Ⅱ)設(shè)曲線C的內(nèi)接矩形的周長(zhǎng)為L(zhǎng),求L的最大值.

【答案】解:(I)曲線C的極坐標(biāo)方程為ρ2= ,即ρ22sin2θ=4,

可得直角坐標(biāo)方程:x2+2y2=4,化為: + =1.

∴c= = ,可得作焦點(diǎn)F

直線l的參數(shù)方程為 (t為參數(shù)),消去參數(shù)t可得:x﹣y=m,

代入可得:m=﹣

∴直線l的普通方程為:x﹣y+ =0.

(II)設(shè)橢圓C的內(nèi)接矩形在第一象限的頂點(diǎn)為

∴橢圓C的內(nèi)接矩形的周長(zhǎng)為L(zhǎng)=8cosθ+4 sinθ=4 sin(θ+φ)≤4 (其中tanφ= ).

∴橢圓C的內(nèi)接矩形的周長(zhǎng)的最大值為4


【解析】(I)曲線C的極坐標(biāo)方程為ρ2= ,即ρ22sin2θ=4,利用互化公式可得直角坐標(biāo)方程,可得作焦點(diǎn)F .直線l的參數(shù)方程為 (t為參數(shù)),消去參數(shù)t可得:x﹣y=m,把F代入可得:m.(II)設(shè)橢圓C的內(nèi)接矩形在第一象限的頂點(diǎn)為 .可得橢圓C的內(nèi)接矩形的周長(zhǎng)為L(zhǎng)=8cosθ+4 sinθ=4 sin(θ+φ)(其中tanφ= ).即可得出橢圓C的內(nèi)接矩形的周長(zhǎng)的最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 為自然對(duì)數(shù)的底數(shù).
(1)求曲線 處的切線方程;
(2)關(guān)于 的不等式 上恒成立,求實(shí)數(shù) 的值;
(3)關(guān)于 的方程 有兩個(gè)實(shí)根 ,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某市的中學(xué)生中隨機(jī)調(diào)查了部分男生,獲得了他們的身高數(shù)據(jù),整理得到如下頻率分布直方圖.
(Ⅰ)求a的值;
(Ⅱ)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替,估計(jì)該市中學(xué)生中的全體男生的平均身高;
(Ⅲ)從該市的中學(xué)生中隨機(jī)抽取一名男生,根據(jù)直方圖中的信息,估計(jì)其身高在180cm 以上的概率.若從全市中學(xué)的男生(人數(shù)眾多)中隨機(jī)抽取3人,用X表示身高在180cm以上的男生人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(ax﹣1)lnx+ . (Ⅰ)若a=2,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線l的方程;
(Ⅱ)設(shè)函數(shù)g(x)=f'(x)有兩個(gè)極值點(diǎn)x1 , x2 , 其中x1∈(0,e),求g(x1)﹣g(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,若a=2,b=3,∠C=2∠A.
(I)求c的值;
(Ⅱ)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年3月27日,一則“清華大學(xué)要求從2017級(jí)學(xué)生開始,游泳達(dá)到一定標(biāo)準(zhǔn)才能畢業(yè)”的消息在體育界和教育界引起了巨大反響.游泳作為一項(xiàng)重要的求生技能和運(yùn)動(dòng)項(xiàng)目受到很多人的喜愛.其實(shí),已有不少高校將游泳列為必修內(nèi)容.某中學(xué)為了解2017屆高三學(xué)生的性別和喜愛游泳是否有關(guān),對(duì)100名高三學(xué)生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計(jì)

男生

10

女生

20

合計(jì)

已知在這100人中隨機(jī)抽取1人,抽到喜歡游泳的學(xué)生的概率為
(Ⅰ)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;
(Ⅱ)判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?
附:

p(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:函數(shù)f(x)= 是奇函數(shù),命題q:函數(shù)g(x)=x3﹣x2在區(qū)間(0,+∞)上單調(diào)遞增.則下列命題中為真命題的是(
A.p∨q
B.p∧q
C.¬p∧q
D.¬p∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,設(shè)拋物線E:y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為直線l,點(diǎn)A、B在直線l上,點(diǎn)M為拋物線E第一象限上的點(diǎn),△ABM是邊長(zhǎng)為 的等邊三角形,直線MF的傾斜角為60°.
(1)求拋物線E的方程;
(2)如圖,直線m過點(diǎn)F交拋物線E于C、D兩點(diǎn),Q(2,0),直線CQ、DQ分別交拋物線E于G、H兩點(diǎn),設(shè)直線CD、GH的斜率分別為k1、k2 , 求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面給出四種說法: ①用相關(guān)指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③設(shè)隨機(jī)變量X服從正態(tài)分布N(0,1),若P(x>1)=p,則P(﹣1<X<0)= ﹣p
④回歸直線一定過樣本點(diǎn)的中心( , ).
其中正確的說法有(請(qǐng)將你認(rèn)為正確的說法的序號(hào)全部填寫在橫線上)

查看答案和解析>>

同步練習(xí)冊(cè)答案