解:(1)∵S=
absinC,
∴2S=absinC=c
2-(a-b)
2,化簡(jiǎn)得ab(sinC-2)=-(a
2+b
2-c
2)
∵根據(jù)余弦定理,得a
2+b
2-c
2=2abcossC
∴ab(sinC-2)=-2abcossC,整理得sinC=2-2cosC
由此可得:
;…(5分)
(2)由(1)得
,結(jié)合sin
2C+cos
2C=1解得sinC=
∴S=
absinC=
ab
∵a+b=2,∴S=
,
當(dāng)且僅當(dāng)a=b=1時(shí),面積S的最大值為
.…(10分)
分析:(1)根據(jù)正弦定理關(guān)于面積的公式,對(duì)照已知等式可得ab(sinC-2)=-(a
2+b
2-c
2),再結(jié)合余弦定理整理可得sinC=2-2cosC,由此即可得到
的值;
(2)根據(jù)(1)中求出的值結(jié)合同角三角函數(shù)的關(guān)系,算出sinC=
,利用面積公式得S=
ab,再結(jié)合a+b=2和二次函數(shù)的性質(zhì),即可得到S的最大值.
點(diǎn)評(píng):本題給出已知條件,求角C的式子的值并求三角形面積的最大值,著重考查了利用正、余弦定理解決三角形中的問(wèn)題和二次函數(shù)求最值等知識(shí),屬于中檔題.