14.在1,2,4,5這4個(gè)數(shù)中一次隨機(jī)地取2個(gè)數(shù),則所取的2個(gè)數(shù)的和為6的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{2}{5}$D.$\frac{3}{5}$

分析 先求出基本事件總數(shù),再求出所取的2個(gè)數(shù)的和為6包含的基本事件個(gè)數(shù),由此能求出所取的2個(gè)數(shù)的和為6的概率.

解答 解:在1,2,4,5這4個(gè)數(shù)中一次隨機(jī)地取2個(gè)數(shù),
基本事件總數(shù)n=${C}_{4}^{2}=6$,
所取的2個(gè)數(shù)的和為6包含的基本事件有:(1,5),(2,4),共有m=2個(gè),
∴所取的2個(gè)數(shù)的和為6的概率為p=$\frac{m}{n}$=$\frac{2}{6}=\frac{1}{3}$.
故選:A.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直線l:x+y=1在矩陣$A=[\begin{array}{l}m,n\\ 0,1\end{array}]$對(duì)應(yīng)的變換作用下變?yōu)橹本l':x-y=1,求矩陣A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè) A為雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左頂點(diǎn),直線x=a與雙曲線的一條漸近線交于點(diǎn) M,點(diǎn) M關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為 N,若雙曲線的離心率為$\frac{{\sqrt{21}}}{3}$,則∠M A N=( 。
A.120°B.135°C.150°D.105°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.過拋物線y=ax2(a>$\frac{1}{12}$)的焦點(diǎn)F作圓C:x2+y2-8y+15=0的一條切線,切點(diǎn)為 M,若|FM|=2$\sqrt{2}$.
(1)求實(shí)數(shù)a的值;
(2)直線l經(jīng)過點(diǎn)F,且與拋物線交于點(diǎn) A、B,若以 A B為直徑的圓與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=log3x,若正數(shù)a,b滿足b=9a,則f(a)-f(b)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,若sinB,sinA,sinC成等差數(shù)列,則sinA的取值范圍是$({0,\frac{{\sqrt{3}}}{2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.P為雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{{{a^2}-4}}$=1(a>2)上位于第一象限內(nèi)一點(diǎn),且OP=2$\sqrt{2}$,令∠POx=θ,則θ的取值范圍為( 。
A.$(0,\frac{π}{12}]$B.$(0,\frac{π}{6}]$C.$(0,\frac{π}{4}]$D.$(0,\frac{π}{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.集合M={x|lgx>0},N={x|x2≤4},則M∩N=( 。
A.(1,2)B.[1,2]C.(1,2]D.[1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.長(zhǎng)方體ABCD-A1B1C1D1的8個(gè)頂點(diǎn)都在球O的表面上,E為AB的中點(diǎn),CE=3,cos∠ACE=$\frac{{5\sqrt{3}}}{9}$,且四邊形ABB1A1為正方形,則球O的直徑為4或$\sqrt{51}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案