【題目】已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓C的離心率為,且橢圓C過(guò)點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)若直線l:與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以為直徑的圓過(guò)橢圓C的右頂點(diǎn),求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
【答案】(1)(2)證明見(jiàn)解析;定點(diǎn)坐標(biāo)為
【解析】
(1) 由題意結(jié)合離心率首先確定的關(guān)系,然后結(jié)合橢圓經(jīng)過(guò)的點(diǎn)即可確定橢圓方程;
(2) 把直線的方程與橢圓的方程聯(lián)立可得根與系數(shù)的關(guān)系,再利用以為直徑的圓過(guò)橢圓的右頂點(diǎn)D,可得,即可得出與的關(guān)系,從而得出答案.
解:(1)由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為(),,橢圓C過(guò)點(diǎn),,解得
∴橢圓的標(biāo)準(zhǔn)方程為.
(2)設(shè),,直線代入橢圓方程得
得,
,即,則
,.
又,
因?yàn)橐?/span>為直徑的圓過(guò)橢圓的右焦點(diǎn),
∴,即,∴,
∴,∴.
解得,,且均滿(mǎn)足,
當(dāng)時(shí),l的方程為,直線過(guò)定點(diǎn),與已知矛盾;
當(dāng)時(shí),l的方程為,直線過(guò)定點(diǎn).
所以,直線l過(guò)定點(diǎn),定點(diǎn)坐標(biāo)為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)設(shè)函數(shù),若函數(shù)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】炎炎夏季,水蜜桃成為備受大家歡迎的一種水果,某果園的水蜜桃質(zhì)量分布如圖所示.
(Ⅰ)求m的值;
(Ⅱ)以頻率估計(jì)概率,若從該果園中隨機(jī)采摘5個(gè)水蜜桃,記質(zhì)量在300克以上(含300克)的個(gè)數(shù)為X,求X的分布列及數(shù)學(xué)期望;
(Ⅲ)經(jīng)市場(chǎng)調(diào)查,該種水蜜桃在過(guò)去50天的銷(xiāo)售量(單位:千克)和價(jià)格(單位:元/千克)均為銷(xiāo)售時(shí)間t(天)的函數(shù),且銷(xiāo)售量近似地滿(mǎn)足f(t)=﹣3t+300(1≤t≤50,t∈N),前30天價(jià)格為g(t)=+20(1≤t≤30,t∈N),后20天價(jià)格為g(t)=30(31≤t≤50,t∈N),求日銷(xiāo)售額S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的離心率為,過(guò)橢圓的焦點(diǎn)且與長(zhǎng)軸垂直的弦長(zhǎng)為1.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M為橢圓上第一象限內(nèi)一動(dòng)點(diǎn),A,B分別為橢圓的左頂點(diǎn)和下頂點(diǎn),直線MB與x軸交于點(diǎn)C,直線MA與y軸交于點(diǎn)D,求證:四邊形ABCD的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱(chēng)為函數(shù)的“局部對(duì)稱(chēng)點(diǎn)”.
(1),其中,試判斷是否有“局部對(duì)稱(chēng)點(diǎn)”?若有,請(qǐng)求出該點(diǎn);若沒(méi)有,請(qǐng)說(shuō)明理由;
(2)若函數(shù)在區(qū)間內(nèi)有“局部對(duì)稱(chēng)點(diǎn)”,求實(shí)數(shù)m的取值范圍;
(3)若函數(shù)在R上有“局部對(duì)稱(chēng)點(diǎn)”,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若給定非零實(shí)數(shù),對(duì)于任意實(shí)數(shù),總存在非零常數(shù),使得恒成立,則稱(chēng)函數(shù)是上的級(jí)類(lèi)周期函數(shù),若函數(shù)是上的2級(jí)2類(lèi)周期函數(shù),且當(dāng)時(shí),,又函數(shù).若,,使成立,則實(shí)數(shù)的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:
甲說(shuō):“是或作品獲得一等獎(jiǎng)”; 乙說(shuō):“ 作品獲得一等獎(jiǎng)”;
丙說(shuō):“ 兩件作品未獲得一等獎(jiǎng)”; 丁說(shuō):“是作品獲得一等獎(jiǎng)”.
評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班主任對(duì)全班50名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查,喜歡玩電腦游戲的同學(xué)認(rèn)為作業(yè)多的有18人,認(rèn)為作業(yè)不多的有9人,不喜歡玩電腦游戲的同學(xué)認(rèn)為作業(yè)多的有8人,認(rèn)為作業(yè)不多的有15人,則認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)量的多少有關(guān)系的把握大約是多少?
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com