我們把形如的函數(shù)稱為“莫言函數(shù)”,并把其與軸的交點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)稱為“莫言點(diǎn)”,以“莫言點(diǎn)”為圓心凡是與“莫言函數(shù)”圖象有公共點(diǎn)的圓,皆稱之為“莫言圓”.當(dāng)時(shí),在所有的“莫言圓”中,面積的最小值   

 

【答案】

【解析】

試題分析:當(dāng)a=1,b=1時(shí),

則函數(shù) y=與Y軸交于(0,-1)點(diǎn)

則“莫言點(diǎn)”坐標(biāo)為(0,1),令“莫言圓”的標(biāo)準(zhǔn)方程為x2+(y-1)2=r2,

令“莫言圓”與函數(shù) y=圖象的左右兩支相切,則切點(diǎn)坐標(biāo)為(,),

此時(shí)r=;

令“莫言圓”與函數(shù) y=圖象的下支相切,則切點(diǎn)坐標(biāo)為(0,-1),此時(shí)r=2;

故所有的“莫言圓”中,面積的最小值為3π。

考點(diǎn):本題主要考查直線與圓的位置關(guān)系,函數(shù)的圖象和性質(zhì)。

點(diǎn)評(píng):中檔題,根據(jù)“莫言圓”的圓心坐標(biāo)及“莫言函數(shù)”的解析式,求出“莫言圓”的圓心到函數(shù)圖象距離的最小值是解答本題的關(guān)鍵。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013屆浙江省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

我們把形如的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對(duì)數(shù):在函數(shù)解析式兩邊求對(duì)數(shù)得,兩邊對(duì)求導(dǎo)數(shù),得于是,運(yùn)用此方法可以求得函數(shù)在(1,1)處的切線方程是 ­­­­­­_________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三第八次月考理科數(shù)學(xué)試卷 題型:填空題

我們把形如的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對(duì)數(shù)法:在函數(shù)解析式兩邊取對(duì)數(shù)得,兩邊對(duì)x求導(dǎo)數(shù),得于是,運(yùn)用此方法可以求得函數(shù)在(1,1)處的切線方程是          .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期2月聯(lián)考理科數(shù)學(xué) 題型:填空題

我們把形如的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對(duì)法數(shù):在函數(shù)解析式兩邊求對(duì)數(shù)得,兩邊對(duì)x求導(dǎo)數(shù),得于是,運(yùn)用此方法可以求得函數(shù)在(1,1)處的切線方程是  ▲ 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山西省高三期中考試數(shù)學(xué)卷 題型:選擇題

Ⅰ(理)我們把形如的函數(shù)稱為冪指函數(shù),冪指函數(shù)在求導(dǎo)時(shí),可以利用對(duì)數(shù)法:在函數(shù)解析式兩邊求對(duì)數(shù)得,兩邊求導(dǎo)數(shù),得

,于是,運(yùn)用此方法可以探求得函數(shù)的一個(gè)單調(diào)遞增區(qū)間是

A.       B.       C.       D.  

 

查看答案和解析>>

同步練習(xí)冊(cè)答案