(本小題滿分12分)

已知一四棱錐P-ABCD的三視圖如下,E是側(cè)棱PC上的動(dòng)點(diǎn)。

(Ⅰ)求四棱錐P-ABCD的體積;

(Ⅱ)當(dāng)點(diǎn)E在何位置時(shí),BD⊥AE?證明你的結(jié)論;

(Ⅲ)若點(diǎn)E為PC的中點(diǎn),求二面角D-AE-B的大小.

 

【答案】

(Ⅰ);(Ⅱ)不論點(diǎn)E在何位置,都有BD⊥AE;(Ⅲ)。

【解析】

試題分析:(Ⅰ)解:由該四棱錐的三視圖可知,該四棱錐P-ABCD的底面是邊長(zhǎng)為1的正方形,

側(cè)棱PC⊥底面ABCD,且PC="2."

----------------------------2分

(Ⅱ) 不論點(diǎn)E在PC上何位置,都有BD⊥AE---------------------------------------3分

證明如下:連結(jié)AC,∵ABCD是正方形

∴BD⊥AC ∵PC⊥底面ABCD 且平面 ∴BD⊥PC-----------5分

又∵∴BD⊥平面PAC 

∵不論點(diǎn)E在何位置,都有AE平面PAC 

∴不論點(diǎn)E在何位置,都有BD⊥AE ----------------------------------------------7分

(Ⅲ) 解法一:在平面DAE內(nèi)過(guò)點(diǎn)D作DG⊥AE于G,連結(jié)BG

∵CD="CB,EC=EC," ∴

∴ED="EB," ∵AD=AB ∴△EDA≌△EBA

∴BG⊥EA ∴為二面角D-EA-B的平面角--------------------------10分

∵BC⊥DE,   AD∥BC ∴AD⊥DE

在Rt△ADE中==BG

在△DGB中,由余弦定理得

=-----------------------12分

[解法二:以點(diǎn)C為坐標(biāo)原點(diǎn),CD所在的直線為x軸建立空間直角坐標(biāo)系如圖示:

,從

設(shè)平面ADE和平面ABE的法向量分別為

可得:,

同理得:。令,則,

------10分

設(shè)二面角D-AE-B的平面角為,則 ∴------12分

考點(diǎn):錐體的體積公式;線面垂直的判定定理;線面垂直的性質(zhì)定理;二面角。

點(diǎn)評(píng):二面角的求法是立體幾何中的一個(gè)難點(diǎn)。我們解決此類問(wèn)題常用的方法有兩種:①綜合法,綜合法的一般步驟是:一作二說(shuō)三求。②向量法,運(yùn)用向量法求二面角應(yīng)注意的是計(jì)算。很多同學(xué)都會(huì)應(yīng)用向量法求二面角,但結(jié)果往往求不對(duì),出現(xiàn)的問(wèn)題就是計(jì)算錯(cuò)誤。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬(wàn)元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案