【題目】定義在R上的偶函數(shù)f(x)滿足f(x+1)= ,且f(x)在[﹣3,﹣2]上是減函數(shù),若α,β是銳角三角形的兩個(gè)內(nèi)角,則( )
A.f(sinα)>f(sinβ)
B.f(cosα)>f(cosβ)
C.f(sinα)>f(cosβ)
D.f(sinα)<f(cosβ)
【答案】C
【解析】解:∵f(x+1)= ,∴f(x+2)=f(x),f(x)是周期為2的周期函數(shù).
∵y=f(x)是定義在R上的偶函數(shù),∴f(﹣x)=f(x),∵f(x)在[﹣3,﹣2]上是減函數(shù),
∴在[2,3]上是增函數(shù),∴在[0,1]上是增函數(shù),∵α,β是銳角三角形的兩個(gè)內(nèi)角.
∴α+β>90°,α>90°﹣β,兩邊同取正弦得:sinα>sin(90°﹣β)=cosβ,
且sinα、cosβ都在區(qū)間[0,1]上,
∴f(sinα)>f(cosβ),
故選:C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用奇偶性與單調(diào)性的綜合的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相反的單調(diào)性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)是定義在R上的偶函數(shù),在[0,+∞)上單調(diào)遞增.若a=f(log ),b=f(log ),c=f(﹣2),則a,b,c的大小關(guān)系是( )
A.a>b>c
B.b>c>a
C.c>b>a
D.c>a>b
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,BC=4,且sinB,sinA,sinC成等差數(shù)列,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求點(diǎn)A的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】種子發(fā)芽率與晝夜溫差有關(guān).某研究性學(xué)習(xí)小組對(duì)此進(jìn)行研究,他們分別記錄了3月12日至3月16日的晝夜溫差與每天100顆某種種子浸泡后的發(fā)芽數(shù),如下表:
(I)從3月12日至3月16日中任選2天,記發(fā)芽的種子數(shù)分別為c,d,求事件“c,d均不小于25”的概率;
(II)請(qǐng)根據(jù)3月13日至3月15日的三組數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(III)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與實(shí)際數(shù)據(jù)誤差均不超過(guò)2顆,則認(rèn)為回歸方程是可靠的,試用3月12日與16日的兩組數(shù)據(jù)檢驗(yàn),(II)中的回歸方程是否可靠?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= 為偶函數(shù)
(1)求實(shí)數(shù)a的值;
系;
(2)記集合E={y|y=f(x),x∈{﹣1,1,2}},λ=lg22+lg2lg5+lg5﹣ ,判斷λ與E的
(3)當(dāng)x∈[ , ](m>0,n>0)時(shí),若函數(shù)f(x)的值域[2﹣3m,2﹣3n],求實(shí)數(shù)m,n值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面為平行四邊形, , , , 點(diǎn)在底面內(nèi)的射影在線段上,且, , 為的中點(diǎn), 在線段上,且.
(Ⅰ)當(dāng)時(shí),證明:平面平面;
(Ⅱ)當(dāng)平面與平面所成的二面角的正弦值為時(shí),求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知點(diǎn)A(1,0),D(﹣1,0),點(diǎn)B,C在單位圓O上,且∠BOC= .
(1)若點(diǎn)B( , ),求cos∠AOC的值;
(2)設(shè)∠AOB=x(0<x< ),四邊形ABCD的周長(zhǎng)為y,將y表示成x的函數(shù),并求出y的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某企業(yè)生產(chǎn)的某中產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的質(zhì)量指標(biāo)值.由測(cè)量結(jié)果得到如圖所示的頻率分布直方圖,質(zhì)量指標(biāo)值落在區(qū)間[55,65),[65,75),[75,85]內(nèi)的頻率之比為4:2:1.
(1)求這些產(chǎn)品質(zhì)量指標(biāo)落在區(qū)間[75,85]內(nèi)的概率;
(2)用分層抽樣的方法在區(qū)間[45,75)內(nèi)抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任意抽取2件產(chǎn)品,求這2件產(chǎn)品都在區(qū)間[45,65)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△PAD與正方形ABCD共用一邊AD,平面PAD⊥平面ABCD,其中PA=PD,AB=2,點(diǎn)E是棱PA的中點(diǎn).
(1)求證:PC∥平面BDE;
(2)若直線PA與平面ABCD所成角為60°,求點(diǎn)A到平面BDE的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com