對(duì)于函數(shù),若存在x0∈R,使方程成立,則稱(chēng)x0為的不動(dòng)點(diǎn),已知函數(shù)(a≠0).
(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)b,函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;
(1) 1為的不動(dòng)點(diǎn)(2)
【解析】
試題分析:解:(1)由題得:,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102120014799579807/SYS201310212002361821883138_DA.files/image004.png">為不動(dòng)點(diǎn),
因此有,即 2分
所以或,即3和-1為的不動(dòng)點(diǎn)。 5分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102120014799579807/SYS201310212002361821883138_DA.files/image001.png">恒有兩個(gè)不動(dòng)點(diǎn),
∴ ,
即 (※)恒有兩個(gè)不等實(shí)數(shù)根, 8分
由題設(shè)恒成立, 10分
即對(duì)于任意b∈R,有恒成立,
所以有 , 12分
∴ 13分
考點(diǎn):本題考查的重點(diǎn)是函數(shù)與方程的綜合運(yùn)用,主要是考查了函數(shù)的零點(diǎn)的變形運(yùn)用問(wèn)題,屬于基礎(chǔ)題?疾橥瑢W(xué)們的等價(jià)轉(zhuǎn)換能力和分析問(wèn)題解決問(wèn)題的能力。
點(diǎn)評(píng):解題的關(guān)鍵是對(duì)新定義的理解,建立方程,將不動(dòng)點(diǎn)的問(wèn)題,轉(zhuǎn)化為結(jié)合一元二次方程中必然有兩個(gè)不等的實(shí)數(shù)根來(lái)求解參數(shù)的取值范圍。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
對(duì)于函數(shù),若存在x0∈R,使f(x0)=x0成立,則稱(chēng)x0為f(x)的不動(dòng)點(diǎn).如果函數(shù)f(x)=有且僅有兩個(gè)不動(dòng)點(diǎn)0和2.
(Ⅰ)試求b、c滿(mǎn)足的關(guān)系式;
(Ⅱ)若c=2時(shí),各項(xiàng)不為零的數(shù)列{an}滿(mǎn)足4Sn?f()=1,求證:<<;
(Ⅲ)設(shè)bn=-,Tn為數(shù)列{bn}的前n項(xiàng)和,求證:T2009-1<ln2009<T2008.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
對(duì)于函數(shù),若存在x0∈R,使f(x0)=x0成立,則稱(chēng)x0為f(x)的不動(dòng)點(diǎn).如果函數(shù)f(x)=有且僅有兩個(gè)不動(dòng)點(diǎn)0和2.
(Ⅰ)試求b、c滿(mǎn)足的關(guān)系式;
(Ⅱ)若c=2時(shí),各項(xiàng)不為零的數(shù)列{an}滿(mǎn)足4Sn·f()=1,
求證:<<;
(Ⅲ)設(shè)bn=-,Tn為數(shù)列{bn}的前n項(xiàng)和,求證:T2009-1<ln2009<T2008.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年福建省高一上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
(本小題滿(mǎn)10分)注意:第(3)小題平行班學(xué)生不必做,特保班學(xué)生必須做。對(duì)于函數(shù),若存在x0∈R,使成立,則稱(chēng)x0為的不動(dòng)點(diǎn)。已知函數(shù)(a≠0)。
(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)b,函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;
(3)(特保班做) 在(2)的條件下,若圖象上A、B兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且A、B兩點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng),求的的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿(mǎn)10分)注意:第(3)小題平行班學(xué)生不必做,特保班學(xué)生必須做。
對(duì)于函數(shù),若存在x0∈R,使成立,則稱(chēng)x0為的不動(dòng)點(diǎn)。
已知函數(shù)(a≠0)。
(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)b,函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;
(3)(特保班做) 在(2)的條件下,若圖象上A、B兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且A、B兩點(diǎn)關(guān)于點(diǎn)對(duì)稱(chēng),求的的最小值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com