[2014·綿陽(yáng)周測(cè)]設(shè)t=a+2b,s=a+b2+1,則下列關(guān)于t和s的大小關(guān)系中正確的是(  )

A.t>s B.t≥s C.t<s D.t≤s

 

D

【解析】s-t=b2-2b+1=(b-1)2≥0,

∴s≥t,選D項(xiàng).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:8-7拋物線(解析版) 題型:選擇題

[2014·天津調(diào)研]已知點(diǎn)P是拋物線y2=2x上的動(dòng)點(diǎn),點(diǎn)P到準(zhǔn)線的距離為d,且點(diǎn)P在y軸上的射影是M,點(diǎn)A(,4),則|PA|+|PM|的最小值是(  )

A. B.4 C. D.5

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-6空間向量及運(yùn)算(解析版) 題型:選擇題

[2013·重慶診測(cè)]若向量a=(1,λ,2),b=(2,-1,2),且a與b的夾角余弦值為,則λ等于(  )

A.2 B.-2 C.-2或 D.2或-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-2空間幾何體的表面積和體積(解析版) 題型:填空題

[2012·遼寧高考]已知正三棱錐P-ABC,點(diǎn)P,A,B,C都在半徑為的球面上,若PA,PB,PC兩兩相互垂直,則球心到截面ABC的距離為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:7-1空間幾何體結(jié)構(gòu)及三視圖和直觀圖(解析版) 題型:選擇題

[2013·寧波質(zhì)檢]如圖,水平放置的三棱柱的側(cè)棱長(zhǎng)和底邊長(zhǎng)均為2,且側(cè)棱AA1⊥平面A1B1C1,正視圖是正方形,俯視圖是正三角形,該三棱柱的側(cè)視圖面積為(  )

A.2 B. C.2 D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:6-5合情推理與演繹推理(解析版) 題型:選擇題

[2013·西安檢測(cè)]給出下列三個(gè)類(lèi)比結(jié)論.

①(ab)n=anbn與(a+b)n類(lèi)比,則有(a+b)n=an+bn;

②loga(xy)=logax+logay與sin(α+β)類(lèi)比,則有sin(α+β)=sinαsinβ;

③(a+b)2=a2+2ab+b2與(a+b)2類(lèi)比,則有(a+b)2=a2+2a·b+b2.

其中結(jié)論正確的個(gè)數(shù)是(  )

A.0 B.1 C.2 D.3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:6-3二元一次不等式及簡(jiǎn)單線性規(guī)劃問(wèn)題(解析版) 題型:填空題

[2013·陜西高考]若點(diǎn)(x,y)位于曲線y=|x-1|與y=2所圍成的封閉區(qū)域,則2x-y的最小值為_(kāi)_______.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:5-5數(shù)列的綜合應(yīng)用(解析版) 題型:選擇題

[2014·河北教學(xué)質(zhì)量監(jiān)測(cè)]已知數(shù)列{an}滿(mǎn)足:a1=1,an+1= (n∈N*).若bn+1=(n-λ)(+1)(n∈N*),b1=-λ,且數(shù)列{bn}是單調(diào)遞增數(shù)列,則實(shí)數(shù)λ的取值范圍為(  )

A.λ>2 B.λ>3 C.λ<2 D.λ<3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015數(shù)學(xué)一輪復(fù)習(xí)迎戰(zhàn)高考:4-1向量的概念及運(yùn)算(解析版) 題型:選擇題

[2014·牡丹江模擬]設(shè)e1,e2是兩個(gè)不共線的向量,且a=e1+λe2與b=-e2-e1共線,則實(shí)數(shù)λ=(  )

A.-1 B.3 C.- D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案