【題目】設(shè)各項均為正數(shù)的數(shù)列{an}滿足 =pn+r(p,r為常數(shù)),其中Sn為數(shù)列{an}的前n項和.
(1)若p=1,r=0,求證:{an}是等差數(shù)列;
(2)若p= ,a1=2,求數(shù)列{an}的通項公式;
(3)若a2015=2015a1 , 求pr的值.
【答案】
(1)證明:由p=1,r=0,得Sn=nan,
∴Sn﹣1=(n﹣1)an﹣1(n≥2),
兩式相減,得an﹣an﹣1=0(n≥2),
∴{an}是等差數(shù)列
(2)解:令n=1,得p+r=1,∴ ,
則 ,
∴ ,兩式相減,
得 ,
∴ ,
化簡得 ,
∴ ,
又a1=2適合 ,
∴
(3)解:由(2)知r=1﹣p,
∴Sn=(pn+1﹣p)an,得Sn﹣1=(pn+1﹣2p)an﹣1(n≥2),
兩式相減,得p(n﹣1)an=(pn+1﹣2p)an﹣1(n≥2),
易知p≠0,∴ .
①當(dāng) 時,得 ,
∴ ,
滿足a2015=2015a1;
②當(dāng) 時,由p(n﹣1)an=(pn+1﹣2p)an﹣1(n≥2),又an>0,
∴p(n﹣1)an<pnan﹣1(n≥2),即 ,
∴ ,不滿足a2015=2015a1;
③當(dāng) 且p≠0時,類似可以證明a2015=2015a1也不成立;
綜上所述, , ,∴
【解析】(1)利用遞推關(guān)系即可得出;(2)利用遞推關(guān)系與“累乘求積”即可得出;(3)利用遞推關(guān)系,對q分類討論即可得出.
【考點精析】根據(jù)題目的已知條件,利用等差關(guān)系的確定和數(shù)列的通項公式的相關(guān)知識可以得到問題的答案,需要掌握如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),即-=d ,(n≥2,n∈N)那么這個數(shù)列就叫做等差數(shù)列;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知cos(75°+α)=,α是第三象限角,
(1)求sin(75°+α) 的值.
(2)求cos(α-15°) 的值.
(3)求sin(195°-α)+cos(105o-α)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 分別是橢圓的左、右焦點, 是橢圓的頂點, 是直線與橢圓的另一個交點, .
(1)求橢圓的離心率;
(2)已知的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項 , ,n=1,2,3,….
(1)證明:數(shù)列 是等比數(shù)列;
(2)數(shù)列 的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項Sn=(﹣1)n ,若存在正整數(shù)n,使得(an﹣1﹣p)(an﹣p)<0成立,則實數(shù)p的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市若規(guī)劃一居民小區(qū)ABCD,AD=2千米,AB=1千米,∠A=90°,政府決定從該地塊中劃出一個直角三角形地塊AEF建活動休閑區(qū)(點E,F(xiàn)分別在線段AB,AD上),且該直角三角形AEF的周長為1千米,△AEF的面積為S.
(1)①設(shè)AE=x,求S關(guān)于x的函數(shù)關(guān)系式;
②設(shè)∠AEF=θ,求S關(guān)于θ的函數(shù)關(guān)系式;
(2)試確定點E的位置,使得直角三角形地塊AEF的面積S最大,并求出S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)=2sin(2x﹣ )的圖象向左平移m個單位(m>0),若所得的圖象關(guān)于直線x= 對稱,則m的最小值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a為實數(shù),給出命題p:函數(shù)f(x)=(a﹣ )x是R上的減函數(shù),命題q:關(guān)于x的不等式( )|x﹣1|≥a的解集為.
(1)若p為真命題,求a的取值范圍;
(2)若q為真命題,求a的取值范圍;
(3)若“p且q”為假命題,“p或q”為真命題,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ( e為自然對數(shù)的底數(shù)),且f(3a﹣2)>f(a﹣1),則實數(shù)a的取值范圍為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com